
Package: hal9001 (via r-universe)
September 18, 2024

Title The Scalable Highly Adaptive Lasso

Version 0.4.6

Description A scalable implementation of the highly adaptive lasso
algorithm, including routines for constructing sparse matrices
of basis functions of the observed data, as well as a custom
implementation of Lasso regression tailored to enhance
efficiency when the matrix of predictors is composed
exclusively of indicator functions. For ease of use and
increased flexibility, the Lasso fitting routines invoke code
from the 'glmnet' package by default. The highly adaptive lasso
was first formulated and described by MJ van der Laan (2017)
<doi:10.1515/ijb-2015-0097>, with practical demonstrations of
its performance given by Benkeser and van der Laan (2016)
<doi:10.1109/DSAA.2016.93>. This implementation of the highly
adaptive lasso algorithm was described by Hejazi, Coyle, and
van der Laan (2020) <doi:10.21105/joss.02526>.

Depends R (>= 3.1.0), Rcpp

License GPL-3

URL https://github.com/tlverse/hal9001

BugReports https://github.com/tlverse/hal9001/issues

Encoding UTF-8

LazyData true

Imports Matrix, stats, utils, methods, assertthat, origami (>= 1.0.3),
glmnet, data.table, stringr

Suggests testthat, knitr, rmarkdown, microbenchmark, future, ggplot2,
dplyr, tidyr, survival, SuperLearner

LinkingTo Rcpp, RcppEigen

VignetteBuilder knitr

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Repository https://tlverse.r-universe.dev

1

https://doi.org/10.1515/ijb-2015-0097
https://doi.org/10.1109/DSAA.2016.93
https://doi.org/10.21105/joss.02526
https://github.com/tlverse/hal9001
https://github.com/tlverse/hal9001/issues

2 +.formula_hal9001

RemoteUrl https://github.com/tlverse/hal9001

RemoteRef HEAD

RemoteSha 92bd08de5ef4076522c24d324d8710cd77eab0ce

Contents
+.formula_hal9001 . 2
apply_copy_map . 3
as_dgCMatrix . 4
basis_list_cols . 4
basis_of_degree . 5
enumerate_basis . 6
evaluate_basis . 8
fit_hal . 8
formula_hal . 12
h . 12
hal9000 . 14
hal9001 . 14
hal_quotes . 14
index_first_copy . 15
make_basis_list . 15
make_copy_map . 16
make_design_matrix . 17
make_reduced_basis_map . 18
meets_basis . 18
predict.hal9001 . 19
predict.SL.hal9001 . 20
print.formula_hal9001 . 21
print.summary.hal9001 . 21
SL.hal9001 . 22
squash_hal_fit . 23
summary.hal9001 . 24

Index 26

+.formula_hal9001 HAL Formula addition: Adding formula term object together into a
single formula object term.

Description

HAL Formula addition: Adding formula term object together into a single formula object term.

Usage

S3 method for class 'formula_hal9001'
x + y

apply_copy_map 3

Arguments

x A formula_hal9001 object as outputted by h.

y A formula_hal9001 object as outputted by h.

apply_copy_map Apply copy map

Description

OR duplicate training set columns together

Usage

apply_copy_map(X, copy_map)

Arguments

X Sparse matrix containing columns of indicator functions.

copy_map the copy map

Value

A dgCMatrix sparse matrix corresponding to the design matrix for a zero-th order highly adaptive
lasso, but with all duplicated columns (basis functions) removed.

Examples

gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(0.5 * (-0.8 * W1 + 0.39 * W2 + 0.08 * W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 * A + 2 * A * W1 + 6 * A * W3 * W4 - 3))
Y <- rbinom(n, 1, Q0)
data.frame(A, W1, W2, W3, W4, Y)

}
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")
X <- as.matrix(data[, covars, drop = FALSE])
basis_list <- enumerate_basis(X)
x_basis <- make_design_matrix(X, basis_list)
copy_map <- make_copy_map(x_basis)
x_basis_uniq <- apply_copy_map(x_basis, copy_map)

4 basis_list_cols

as_dgCMatrix Fast Coercion to Sparse Matrix

Description

Fast and efficient coercion of standard matrix objects to sparse matrices. Borrowed from http://gallery.rcpp.org/articles/sparse-
matrix-coercion/. INTERNAL USE ONLY.

Usage

as_dgCMatrix(XX_)

Arguments

XX_ An object of class Matrix that has a sparse structure suitable for coercion to a
sparse matrix format of dgCMatrix.

Value

An object of class dgCMatrix, coerced from input XX_.

basis_list_cols List Basis Functions

Description

Build a list of basis functions from a set of columns

Usage

basis_list_cols(
cols,
x,
smoothness_orders,
include_zero_order,
include_lower_order = FALSE

)

Arguments

cols Index or indices (as numeric) of covariates (columns) of interest in the data ma-
trix x for which basis functions ought to be generated. Note that basis functions
for interactions of these columns are computed automatically.

x A matrix containing observations in the rows and covariates in the columns.
Basis functions are computed for these covariates.

basis_of_degree 5

smoothness_orders

An integer vector of length ncol(x) specifying the desired smoothness of the
function in each covariate. k = 0 is no smoothness (indicator basis), k = 1 is first
order smoothness, and so on. For an additive model, the component function
for each covariate will have the degree of smoothness as specified by smooth-
ness_orders. For non-additive components (tensor products of univariate basis
functions), the univariate basis functions in each tensor product have smoothness
degree as specified by smoothness_orders.

include_zero_order

A logical, indicating whether the zeroth order basis functions are included
for each covariate (if TRUE), in addition to the smooth basis functions given by
smoothness_orders. This allows the algorithm to data-adaptively choose the
appropriate degree of smoothness.

include_lower_order

A logical, like include_zero_order, except including all basis functions of
lower smoothness degrees than specified via smoothness_orders.

Value

A list containing the basis functions generated from a set of input columns.

basis_of_degree Compute Degree of Basis Functions

Description

Find the full list of basis functions up to a particular degree

Usage

basis_of_degree(
x,
degree,
smoothness_orders,
include_zero_order,
include_lower_order

)

Arguments

x An input matrix containing observations and covariates following standard con-
ventions in problems of statistical learning.

degree The highest order of interaction terms for which the basis functions ought to be
generated. The default (NULL) corresponds to generating basis functions for the
full dimensionality of the input matrix.

6 enumerate_basis

smoothness_orders

An integer vector of length ncol(x) specifying the desired smoothness of the
function in each covariate. k = 0 is no smoothness (indicator basis), k = 1 is first
order smoothness, and so on. For an additive model, the component function
for each covariate will have the degree of smoothness as specified by smooth-
ness_orders. For non-additive components (tensor products of univariate basis
functions), the univariate basis functions in each tensor product have smoothness
degree as specified by smoothness_orders.

include_zero_order

A logical, indicating whether the zeroth order basis functions are included
for each covariate (if TRUE), in addition to the smooth basis functions given by
smoothness_orders. This allows the algorithm to data-adaptively choose the
appropriate degree of smoothness.

include_lower_order

A logical, like include_zero_order, except including all basis functions of
lower smoothness degrees than specified via smoothness_orders.

Value

A list containing basis functions and cutoffs generated from a set of input columns up to a partic-
ular pre-specified degree.

enumerate_basis Enumerate Basis Functions

Description

Generate basis functions for all covariates and interaction terms thereof up to a specified order/degree.

Usage

enumerate_basis(
x,
max_degree = NULL,
smoothness_orders = rep(0, ncol(x)),
include_zero_order = FALSE,
include_lower_order = FALSE,
num_knots = NULL

)

Arguments

x An input matrix containing observations and covariates following standard con-
ventions in problems of statistical learning.

max_degree The highest order of interaction terms for which the basis functions ought to be
generated. The default (NULL) corresponds to generating basis functions for the
full dimensionality of the input matrix.

enumerate_basis 7

smoothness_orders

An integer vector of length ncol(x) specifying the desired smoothness of the
function in each covariate. k = 0 is no smoothness (indicator basis), k = 1 is first
order smoothness, and so on. For an additive model, the component function
for each covariate will have the degree of smoothness as specified by smooth-
ness_orders. For non-additive components (tensor products of univariate basis
functions), the univariate basis functions in each tensor product have smoothness
degree as specified by smoothness_orders.

include_zero_order

A logical, indicating whether the zeroth order basis functions are included
for each covariate (if TRUE), in addition to the smooth basis functions given by
smoothness_orders. This allows the algorithm to data-adaptively choose the
appropriate degree of smoothness.

include_lower_order

A logical, like include_zero_order, except including all basis functions of
lower smoothness degrees than specified via smoothness_orders.

num_knots A vector of length max_degree, which determines how granular the knot points
to generate basis functions should be for each degree of basis function. The first
entry of num_knots determines the number of knot points to be used for each
univariate basis function. More generally, The kth entry of num_knots deter-
mines the number of knot points to be used for the kth degree basis functions.
Specifically, for a kth degree basis function, which is the tensor product of k
univariate basis functions, this determines the number of knot points to be used
for each univariate basis function in the tensor product.

Value

A list of basis functions generated for all covariates and interaction thereof up to a pre-specified
degree.

Examples

gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(0.5 * (-0.8 * W1 + 0.39 * W2 + 0.08 * W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 * A + 2 * A * W1 + 6 * A * W3 * W4 - 3))
Y <- rbinom(n, 1, Q0)
data.frame(A, W1, W2, W3, W4, Y)

}
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")
X <- as.matrix(data[, covars, drop = FALSE])
basis_list <- enumerate_basis(X)

8 fit_hal

evaluate_basis Generate Basis Functions

Description

Populates a column (indexed by basis_col) of x_basis with basis indicators.

Usage

evaluate_basis(basis, X, x_basis, basis_col)

Arguments

basis The basis function.

X The design matrix, containing the original data.

x_basis The HAL design matrix, containing indicator functions.

basis_col Numeric indicating which column to populate.

fit_hal HAL: The Highly Adaptive Lasso

Description

Estimation procedure for HAL, the Highly Adaptive Lasso

Usage

fit_hal(
X,
Y,
formula = NULL,
X_unpenalized = NULL,
max_degree = ifelse(ncol(X) >= 20, 2, 3),
smoothness_orders = 1,
num_knots = num_knots_generator(max_degree = max_degree, smoothness_orders =
smoothness_orders, base_num_knots_0 = 200, base_num_knots_1 = 50),

reduce_basis = NULL,
family = c("gaussian", "binomial", "poisson", "cox", "mgaussian"),
lambda = NULL,
id = NULL,
weights = NULL,
offset = NULL,
fit_control = list(cv_select = TRUE, use_min = TRUE, lambda.min.ratio = 1e-04,

prediction_bounds = "default"),

fit_hal 9

basis_list = NULL,
return_lasso = TRUE,
return_x_basis = FALSE,
yolo = FALSE

)

Arguments

X An input matrix with dimensions number of observations -by- number of co-
variates that will be used to derive the design matrix of basis functions.

Y A numeric vector of observations of the outcome variable. For family="mgaussian",
Y is a matrix of observations of the outcome variables.

formula A character string formula to be used in formula_hal. See its documentation
for details.

X_unpenalized An input matrix with the same number of rows as X, for which no L1 penal-
ization will be performed. Note that X_unpenalized is directly appended to the
design matrix; no basis expansion is performed on X_unpenalized.

max_degree The highest order of interaction terms for which basis functions ought to be
generated.

smoothness_orders

An integer, specifying the smoothness of the basis functions. See details for
smoothness_orders for more information.

num_knots An integer vector of length 1 or max_degree, specifying the maximum num-
ber of knot points (i.e., bins) for any covariate for generating basis functions. If
num_knots is a unit-length vector, then the same num_knots are used for each
degree (this is not recommended). The default settings for num_knots are rec-
ommended, and these defaults decrease num_knots with increasing max_degree
and smoothness_orders, which prevents (expensive) combinatorial explosions
in the number of higher-degree and higher-order basis functions generated. This
allows the complexity of the optimization problem to grow scalably. See details
of num_knots more information.

reduce_basis Am optional numeric value bounded in the open unit interval indicating the
minimum proportion of 1’s in a basis function column needed for the basis func-
tion to be included in the procedure to fit the lasso. Any basis functions with a
lower proportion of 1’s than the cutoff will be removed. Defaults to 1 over the
square root of the number of observations. Only applicable for models fit with
zero-order splines, i.e. smoothness_orders = 0.

family A character or a family object (supported by glmnet) specifying the er-
ror/link family for a generalized linear model. character options are limited
to "gaussian" for fitting a standard penalized linear model, "binomial" for pe-
nalized logistic regression, "poisson" for penalized Poisson regression, "cox"
for a penalized proportional hazards model, and "mgaussian" for multivariate
penalized linear model. Note that passing in family objects leads to slower per-
formance relative to passing in a character family (if supported). For example,
one should set family = "binomial" instead of family = binomial() when
calling fit_hal.

10 fit_hal

lambda User-specified sequence of values of the regularization parameter for the lasso
L1 regression. If NULL, the default sequence in cv.glmnet will be used. The
cross-validated optimal value of this regularization parameter will be selected
with cv.glmnet. If fit_control’s cv_select argument is set to FALSE, then
the lasso model will be fit via glmnet, and regularized coefficient values for
each lambda in the input array will be returned.

id A vector of ID values that is used to generate cross-validation folds for cv.glmnet.
This argument is ignored when fit_control’s cv_select argument is FALSE.

weights observation weights; defaults to 1 per observation.

offset a vector of offset values, used in fitting.

fit_control List of arguments, including the following, and any others to be passed to cv.glmnet
or glmnet.

• cv_select: A logical specifying if the sequence of specified lambda val-
ues should be passed to cv.glmnet in order for a single, optimal value
of lambda to be selected according to cross-validation. When cv_select
= FALSE, a glmnet model will be used to fit the sequence of (or single)
lambda.

• use_min: Specify the choice of lambda to be selected by cv.glmnet. When
TRUE, "lambda.min" is used; otherwise, "lambda.1se". Only used when
cv_select = TRUE.

• lambda.min.ratio: A glmnet argument specifying the smallest value for
lambda, as a fraction of lambda.max, the (data derived) entry value (i.e.
the smallest value for which all coefficients are zero). We’ve seen that not
setting lambda.min.ratio can lead to no lambda values that fit the data
sufficiently well.

• prediction_bounds: An optional vector of size two that provides the
lower and upper bounds predictions; not used when family = "cox". When
prediction_bounds = "default", the predictions are bounded between
min(Y) - sd(Y) and max(Y) + sd(Y) for each outcome (when family =
"mgaussian", each outcome can have different bounds). Bounding ensures
that there is no extrapolation.

basis_list The full set of basis functions generated from X.

return_lasso A logical indicating whether or not to return the glmnet fit object of the lasso
model.

return_x_basis A logical indicating whether or not to return the matrix of (possibly reduced)
basis functions used in fit_hal.

yolo A logical indicating whether to print one of a curated selection of quotes from
the HAL9000 computer, from the critically acclaimed epic science-fiction film
"2001: A Space Odyssey" (1968).

Details

The procedure uses a custom C++ implementation to generate a design matrix of spline basis func-
tions of covariates and interactions of covariates. The lasso regression is fit to this design matrix
via cv.glmnet or a custom implementation derived from origami. The maximum dimension of the

fit_hal 11

design matrix is n -by- (n ∗ 2(d − 1)), where where n is the number of observations and d is the
number of covariates.

For smoothness_orders = 0, only zero-order splines (piece-wise constant) are generated, which
assume the true regression function has no smoothness or continuity. When smoothness_orders
= 1, first-order splines (piece-wise linear) are generated, which assume continuity of the true re-
gression function. When smoothness_orders = 2, second-order splines (piece-wise quadratic and
linear terms) are generated, which assume a the true regression function has a single order of dif-
ferentiability.

num_knots argument specifies the number of knot points for each covariate and for each max_degree.
Fewer knot points can significantly decrease runtime, but might be overly simplistic. When con-
sidering smoothness_orders = 0, too few knot points (e.g., < 50) can significantly reduce perfor-
mance. When smoothness_orders = 1 or higher, then fewer knot points (e.g., 10-30) is actually
better for performance. We recommend specifying num_knots with respect to smoothness_orders,
and as a vector of length max_degree with values decreasing exponentially. This prevents combina-
torial explosions in the number of higher-degree basis functions generated. The default behavior of
num_knots follows this logic — for smoothness_orders = 0, num_knots is set to 500/2j−1, and
for smoothness_orders = 1 or higher, num_knots is set to 200/2j−1, where j is the interaction
degree. We also include some other suitable settings for num_knots below, all of which are less
complex than default num_knots and will thus result in a faster runtime:

• Some good settings for little to no cost in performance:
– If smoothness_orders = 0 and max_degree = 3, num_knots = c(400, 200, 100).
– If smoothness_orders = 1+ and max_degree = 3, num_knots = c(100, 75, 50).

• Recommended settings for fairly fast runtime:
– If smoothness_orders = 0 and max_degree = 3, num_knots = c(200, 100, 50).
– If smoothness_orders = 1+ and max_degree = 3, num_knots = c(50, 25, 15).

• Recommended settings for fast runtime:
– If smoothness_orders = 0 and max_degree = 3, num_knots = c(100, 50, 25).
– If smoothness_orders = 1+ and max_degree = 3, num_knots = c(40, 15, 10).

• Recommended settings for very fast runtime:
– If smoothness_orders = 0 and max_degree = 3, num_knots = c(50, 25, 10).
– If smoothness_orders = 1+ and max_degree = 3, num_knots = c(25, 10, 5).

Value

Object of class hal9001, containing a list of basis functions, a copy map, coefficients estimated for
basis functions, and timing results (for assessing computational efficiency).

Examples

n <- 100
p <- 3
x <- xmat <- matrix(rnorm(n * p), n, p)
y_prob <- plogis(3 * sin(x[, 1]) + sin(x[, 2]))
y <- rbinom(n = n, size = 1, prob = y_prob)
hal_fit <- fit_hal(X = x, Y = y, family = "binomial")
preds <- predict(hal_fit, new_data = x)

12 h

formula_hal HAL Formula: Convert formula or string to formula_HAL object.

Description

HAL Formula: Convert formula or string to formula_HAL object.

Usage

formula_hal(formula, smoothness_orders, num_knots, X = NULL)

Arguments

formula A formula_hal9001 object as outputted by h.

smoothness_orders

A default value for s if not provided explicitly to the function h.

num_knots A default value for k if not provided explicitly to the function h.

X Controls inheritance of the variable X from parent environment. When NULL (the
default), such a variable is inherited.

h HAL Formula term: Generate a single term of the HAL basis

Description

HAL Formula term: Generate a single term of the HAL basis

Usage

h(
...,
k = NULL,
s = NULL,
pf = 1,
monotone = c("none", "i", "d"),
. = NULL,
dot_args_as_string = FALSE,
X = NULL

)

h 13

Arguments

... Variables for which to generate multivariate interaction basis function where the
variables can be found in a matrix X in a parent environment/frame. Note, just
like standard formula objects, the variables should not be characters (e.g. do
h(W1,W2) not h("W1", "W2")) h(W1,W2,W3) will generate three-way HAL
basis functions between W1, W2, and W3. It will not generate the lower di-
mensional basis functions.

k The number of knots for each univariate basis function used to generate the
tensor product basis functions. If a single value then this value is used for the
univariate basis functions for each variable. Otherwise, this should be a vari-
able named list that specifies for each variable how many knots points should be
used. h(W1,W2,W3, k = list(W1 = 3, W2 = 2, W3=1)) is equivalent to first bin-
ning the variables W1, W2 and W3 into 3, 2 and 1 unique values and then calling
h(W1,W2,W3). This coarsening of the data ensures that fewer basis functions are
generated, which can lead to substantial computational speed-ups. If not pro-
vided and the variable num_knots is in the parent environment, then s will be
set to num_knots‘.

s The smoothness_orders for the basis functions. The possible values are 0
for piece-wise constant zero-order splines or 1 for piece-wise linear first-order
splines. If not provided and the variable smoothness_orders is in the parent
environment, then s will be set to smoothness_orders.

pf A penalty.factor value the generated basis functions that is used by glmnet
in the LASSO penalization procedure. pf = 1 (default) is the standard penaliza-
tion factor used by glmnet and pf = 0 means the generated basis functions are
unpenalized.

monotone Whether the basis functions should enforce monotonicity of the interaction term.
If \code{s} = 0, this is monotonicity of the function, and, if \code{s} = 1, this
is monotonicity of its derivative (e.g., enforcing a convex fit). Set "none" for no
constraints, "i" for a monotone increasing constraint, and "d" for a monotone
decreasing constraint. Using "i" constrains the basis functions to have positive
coefficients in the fit, and "d" constrains the basis functions to have negative
coefficients.

. Just like with formula, . as in h(.) or h(.,.) is treated as a wildcard variable
that generates terms using all variables in the data. The argument . should be a
character vector of variable names that . iterates over. Specifically, h(., k=1,
. = c("W1", "W2", "W3")) is equivalent to h(W1, k=1) + h(W2, k=1) + h(W3,
k=1), and h(., ., k=1, . = c("W1", "W2", "W3")) is equivalent to h(W1,W2,
k=1) + h(W2,W3, k=1) + h(W1, W3, k=1)

dot_args_as_string

Whether the arguments ... are characters or character vectors and should thus
be evaluated directly. When TRUE, the expression h("W1", "W2") can be used.

X An optional design matrix where the variables given in ... can be found. Oth-
erwise, X is taken from the parent environment.

14 hal_quotes

hal9000 HAL 9000 Quotes

Description

Prints a quote from the HAL 9000 robot from 2001: A Space Odyssey

Usage

hal9000()

hal9001 hal9001

Description

Package for fitting the Highly Adaptive LASSO (HAL) estimator

hal_quotes HAL9000 Quotes from "2001: A Space Odyssey"

Description

Curated selection of quotes from the HAL9000 computer, from the critically acclaimed epic science-
fiction film "2001: A Space Odyssey" (1968).

Usage

hal_quotes

Format

A vector of quotes.

index_first_copy 15

index_first_copy Find Copies of Columns

Description

Index vector that, for each column in X, indicates the index of the first copy of that column

Usage

index_first_copy(X)

Arguments

X Sparse matrix containing columns of indicator functions.

make_basis_list Sort Basis Functions

Description

Build a sorted list of unique basis functions based on columns, where each basis function is a list

Usage

make_basis_list(X_sub, cols, order_map)

Arguments

X_sub A subset of the columns of X, the original design matrix.

cols An index of the columns that were reduced to by sub-setting.

order_map A vector with length the original unsubsetted matrix X which specifies the
smoothness of the function in each covariate.

Details

Note that sorting of columns is performed such that the basis order equals cols.length() and each
basis function is a list(cols, cutoffs).

16 make_copy_map

make_copy_map Build Copy Maps

Description

Build Copy Maps

Usage

make_copy_map(x_basis)

Arguments

x_basis A design matrix consisting of basis (indicator) functions for covariates (X) and
terms for interactions thereof.

Value

A list of numeric vectors indicating indices of basis functions that are identical in the training set.

Examples

gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(0.5 * (-0.8 * W1 + 0.39 * W2 + 0.08 * W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 * A + 2 * A * W1 + 6 * A * W3 * W4 - 3))
Y <- rbinom(n, 1, Q0)
data.frame(A, W1, W2, W3, W4, Y)

}
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")
X <- as.matrix(data[, covars, drop = FALSE])
basis_list <- enumerate_basis(X)
x_basis <- make_design_matrix(X, basis_list)
copy_map <- make_copy_map(x_basis)

make_design_matrix 17

make_design_matrix Build HAL Design Matrix

Description

Make a HAL design matrix based on original design matrix X and a list of basis functions in
argument blist

Usage

make_design_matrix(X, blist, p_reserve = 0.5)

Arguments

X Matrix of covariates containing observed data in the columns.

blist List of basis functions with which to build HAL design matrix.

p_reserve Sparse matrix pre-allocation proportion. Default value is 0.5. If one expects a
dense HAL design matrix, it is useful to set p_reserve to a higher value.

Value

A dgCMatrix sparse matrix of indicator basis functions corresponding to the design matrix in a
zero-order highly adaptive lasso.

Examples

gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(0.5 * (-0.8 * W1 + 0.39 * W2 + 0.08 * W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 * A + 2 * A * W1 + 6 * A * W3 * W4 - 3))
Y <- rbinom(n, 1, Q0)
data.frame(A, W1, W2, W3, W4, Y)

}
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")
X <- as.matrix(data[, covars, drop = FALSE])
basis_list <- enumerate_basis(X)
x_basis <- make_design_matrix(X, basis_list)

18 meets_basis

make_reduced_basis_map

Mass-based reduction of basis functions

Description

A helper function that finds which basis functions to keep (and equivalently which to discard) based
on the proportion of 1’s (observations, i.e., "mass") included in a given basis function.

Usage

make_reduced_basis_map(x_basis, reduce_basis_crit)

Arguments

x_basis A matrix of basis functions with all redundant basis functions already removed.

reduce_basis_crit

A scalar numeric value bounded in the open interval (0,1) indicating the mini-
mum proportion of 1’s in a basis function column needed for the basis function
to be included in the procedure to fit the Lasso. Any basis functions with a lower
proportion of 1’s than the specified cutoff will be removed. This argument de-
faults to NULL, in which case all basis functions are used in the lasso-fitting stage
of the HAL algorithm.

Value

A binary numeric vector indicating which columns of the matrix of basis functions to keep (given
a one) and which to discard (given a zero).

meets_basis Compute Values of Basis Functions

Description

Computes and returns the indicator value for the basis described by cols and cutoffs for a given row
of X

Usage

meets_basis(X, row_num, cols, cutoffs, orders)

predict.hal9001 19

Arguments

X The design matrix, containing the original data.

row_num Numeri for a row index over which to evaluate.

cols Numeric for the column indices of the basis function.

cutoffs Numeric providing thresholds.

orders Numeric providing smoothness orders

predict.hal9001 Prediction from HAL fits

Description

Prediction from HAL fits

Usage

S3 method for class 'hal9001'
predict(
object,
new_data,
new_X_unpenalized = NULL,
offset = NULL,
type = c("response", "link"),
...

)

Arguments

object An object of class hal9001, containing the results of fitting the Highly Adaptive
Lasso, as produced by fit_hal.

new_data A matrix or data.frame containing new data (i.e., observations not used for
fitting the hal9001 object that’s passed in via the object argument) for which
the hal9001 object will compute predicted values.

new_X_unpenalized

If the user supplied X_unpenalized during training, then user should also sup-
ply this matrix with the same number of observations as new_data.

offset A vector of offsets. Must be provided if provided at training.

type Either "response" for predictions of the response, or "link" for un-transformed
predictions (on the scale of the link function).

... Additional arguments passed to predict as necessary.

Details

Method for computing and extracting predictions from fits of the Highly Adaptive Lasso estimator,
returned as a single S3 objects of class hal9001.

20 predict.SL.hal9001

Value

A numeric vector of predictions from a hal9001 object.

Note

This prediction method does not function similarly to the equivalent method from glmnet. In par-
ticular, this procedure will not return a subset of lambdas originally specified in calling fit_hal
nor result in re-fitting. Instead, it will return predictions for all of the lambdas specified in the
call to fit_hal that constructs object, when fit_control’s cv_select is set to FALSE. When
fit_control’s cv_select is set to TRUE, predictions will only be returned for the value of lambda
selected by cross-validation.

predict.SL.hal9001 predict.SL.hal9001

Description

Predict method for objects of class SL.hal9001

Usage

S3 method for class 'SL.hal9001'
predict(object, newdata, ...)

Arguments

object A fitted object of class hal9001.

newdata A matrix of new observations on which to obtain predictions.

... Not used.

Value

A numeric vector of predictions from a SL.hal9001 object based on the provide newdata.

print.formula_hal9001 21

print.formula_hal9001 Print formula_hal9001 object

Description

Print formula_hal9001 object

Usage

S3 method for class 'formula_hal9001'
print(x, ...)

Arguments

x A formula_hal9001 object.

... Other arguments (ignored).

print.summary.hal9001 Print Method for Summary Class of HAL fits

Description

Print Method for Summary Class of HAL fits

Usage

S3 method for class 'summary.hal9001'
print(x, length = NULL, ...)

Arguments

x An object of class summary.hal9001.

length The number of ranked coefficients to be summarized.

... Other arguments (ignored).

22 SL.hal9001

SL.hal9001 Wrapper for Classic SuperLearner

Description

Wrapper for SuperLearner for objects of class hal9001

Usage

SL.hal9001(
Y,
X,
newX,
family,
obsWeights,
id,
max_degree = 2,
smoothness_orders = 1,
num_knots = 5,
...

)

Arguments

Y A numeric vector of observations of the outcome variable.

X An input matrix with dimensions number of observations -by- number of co-
variates that will be used to derive the design matrix of basis functions.

newX A matrix of new observations on which to obtain predictions. The default of
NULL computes predictions on training inputs X.

family A family object (one that is supported by glmnet) specifying the error/link
family for a generalized linear model.

obsWeights A numeric vector of observational-level weights.

id A numeric vector of IDs.

max_degree The highest order of interaction terms for which basis functions ought to be
generated.

smoothness_orders

An integer vector of length 1 or greater, specifying the smoothness of the
basis functions. See the argument smoothness_orders of fit_hal for more
information.

num_knots An integer vector of length 1 or max_degree, specifying the maximum number
of knot points (i.e., bins) for each covariate for generating basis functions. See
num_knots argument in fit_hal for more information.

... Additional arguments to fit_hal.

squash_hal_fit 23

Value

An object of class SL.hal9001 with a fitted hal9001 object and corresponding predictions based
on the input data.

squash_hal_fit Squash HAL objects

Description

Reduce footprint by dropping basis functions with coefficients of zero

Usage

squash_hal_fit(object)

Arguments

object An object of class hal9001, containing the results of fitting the Highly Adaptive
LASSO, as produced by a call to fit_hal.

Value

Object of class hal9001, similar to the input object but reduced such that coefficients belonging to
bases with coefficients equal to zero removed.

Examples

generate simple test data
n <- 100
p <- 3
x <- matrix(rnorm(n * p), n, p)
y <- sin(x[, 1]) * sin(x[, 2]) + rnorm(n, mean = 0, sd = 0.2)

fit HAL model and squash resulting object to reduce footprint
hal_fit <- fit_hal(X = x, Y = y, yolo = FALSE)
squashed <- squash_hal_fit(hal_fit)

24 summary.hal9001

summary.hal9001 Summary Method for HAL fit objects

Description

Summary Method for HAL fit objects

Usage

S3 method for class 'hal9001'
summary(
object,
lambda = NULL,
only_nonzero_coefs = TRUE,
include_redundant_terms = FALSE,
round_cutoffs = 3,
...

)

Arguments

object An object of class hal9001, containing the results of fitting the Highly Adaptive
Lasso, as produced by fit_hal.

lambda Optional numeric value of the lambda tuning parameter, for which correspond-
ing coefficient values will be summarized. Defaults to fit_hal’s optimal value,
lambda_star, or the minimum value of lambda_star.

only_nonzero_coefs

A logical specifying whether the summary should include only terms with
non-zero coefficients.

include_redundant_terms

A logical specifying whether the summary should remove so-called "redun-
dant terms". We define a redundant term (say x1) as a term (1) with basis func-
tion corresponding to an existing basis function, a duplicate; and (2) the dupli-
cate contains the x1 term as part of its term, so that x1 terms inclusion would
be redundant. For example, say the same coefficient corresponds to these three
terms: (1) "I(age >= 50)*I(bmi >= 18)", (2) "I(age >= 50)", and (3) "I(education
>= 16)". When include_redundant_terms is FALSE (default), the second basis
function is omitted.

round_cutoffs An integer indicating the number of decimal places to be used for rounding
cutoff values in the term. For example, if "bmi" was numeric that was rounded
to the third decimal, in the example above we would have needed to specify
round_cutoffs = 0 in order to yield a term like "I(bmi >= 18)" opposed to
something like "I(bmi >= 18.111)". This rounding is intended to simplify the
term-wise part of the output and only rounds the basis cutoffs, the hal9001
model’s coefficients are not rounded.

... Additional arguments passed to summary, not supported.

summary.hal9001 25

Details

Method for summarizing the coefficients of the Highly Adaptive Lasso estimator in terms of the
basis functions corresponding to covariates and interactions of covariates, returned as a single S3
object of class hal9001.

Due to the nature of the basis function terms, the summary tables can be extremely wide. The R en-
vironment might not be the optimal location to view the summary. Tables can be exported from R to
LaTeX with xtable package (or similar). Here’s an example: print(xtable(summary(fit)$table,
type = "latex"), file = "dt.tex").

Value

A list summarizing a hal9001 object’s coefficients.

Index

∗ datasets
hal_quotes, 14

+.formula_hal9001, 2

apply_copy_map, 3
as_dgCMatrix, 4

basis_list_cols, 4
basis_of_degree, 5

cv.glmnet, 10

enumerate_basis, 6
evaluate_basis, 8

family, 9, 22
fit_hal, 8, 19, 20, 22, 24
formula_hal, 9, 12

glmnet, 9, 10, 22

h, 12
hal9000, 14
hal9001, 14
hal_quotes, 14

index_first_copy, 15

make_basis_list, 15
make_copy_map, 16
make_design_matrix, 17
make_reduced_basis_map, 18
meets_basis, 18

predict.hal9001, 19
predict.SL.hal9001, 20
print.formula_hal9001, 21
print.summary.hal9001, 21

SL.hal9001, 22
squash_hal_fit, 23
summary.hal9001, 24

26

	+.formula_hal9001
	apply_copy_map
	as_dgCMatrix
	basis_list_cols
	basis_of_degree
	enumerate_basis
	evaluate_basis
	fit_hal
	formula_hal
	h
	hal9000
	hal9001
	hal_quotes
	index_first_copy
	make_basis_list
	make_copy_map
	make_design_matrix
	make_reduced_basis_map
	meets_basis
	predict.hal9001
	predict.SL.hal9001
	print.formula_hal9001
	print.summary.hal9001
	SL.hal9001
	squash_hal_fit
	summary.hal9001
	Index

