Title: | Pipelines for Machine Learning and Super Learning |
---|---|
Description: | A modern implementation of the Super Learner prediction algorithm, coupled with a general purpose framework for composing arbitrary pipelines for machine learning tasks. |
Authors: | Jeremy Coyle [aut, cre, cph] , Nima Hejazi [aut] , Oleg Sofrygin [aut] , Ivana Malenica [aut] , Rachael Phillips [aut] , Weixin Cai [ctb] , Yulun Wu [ctb], Hugh Jiang [ctb] |
Maintainer: | Jeremy Coyle <[email protected]> |
License: | GPL-3 |
Version: | 1.4.5 |
Built: | 2025-01-13 04:23:02 UTC |
Source: | https://github.com/tlverse/sl3 |
Get all arguments of parent call (both specified and defaults) as list
args_to_list()
args_to_list()
A list
of all arguments for the parent function call.
Bicycle sharing time series dataset from the UCI Machine Learning Repository.
data(bsds)
data(bsds)
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
Fanaee-T, Hadi, and Gama, Joao, 'Event labeling combining ensemble detectors and background knowledge', Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg
data(bsds) head(bsds) #
data(bsds) head(bsds) #
Subset of growth data from the collaborative perinatal project (CPP).
cpp_imputed
drops observations for which the haz
column is
NA
, and imputes all other observations as 0. This is only for the
purposes of simplifying testing and examples.
data(cpp) data(cpp_imputed)
data(cpp) data(cpp_imputed)
A data frame with 1,912 repated-measures observations and 500 unique subjects:
Subject ID
Age since birth at examination (days)
Weight (kg)
Standing height (cm)
Recumbent length (cm)
BMI (kg/m**2)
Weight for age z-score
Length/height for age z-score
Weight for length/height z-score
BMI for age z-score
Investigational Site ID
Sex (num)
Sex
Maternal breastfeeding status (num)
Maternal breastfeeding status
Gestational age at birth (days)
Birth weight (gm)
Birth length (cm)
APGAR Score 1 min after birth
APGAR Score 5 min after birth
Maternal age at birth of child (yrs)
Maternal race (num)
Maternal race
Mothers marital status (num)
Mothers marital status
Mother, years of education
Socio-economic status (num)
Socio-economic status
Maternal parity
Maternal num pregnancies
Maternal smoking status
Num cigarettes mom smoked per day
Maternal risk factors
https://catalog.archives.gov/id/606622
Broman, Sarah. 'The collaborative perinatal project: an overview.' Handbook of longitudinal research 1 (1984): 185-227.
data(cpp) head(cpp) #
data(cpp) head(cpp) #
Subset of growth data from the collaborative perinatal project (CPP) at
single time-point. The rows in original cpp
data were subset for
agedays==366. See ?cpp
for the description of the variables.
data(cpp_1yr)
data(cpp_1yr)
https://catalog.archives.gov/id/606622
Broman, Sarah. 'The collaborative perinatal project: an overview.' Handbook of longitudinal research 1 (1984): 185-227.
data(cpp_1yr) head(cpp_1yr) table(cpp_1yr[["agedays"]]) #
data(cpp_1yr) head(cpp_1yr) table(cpp_1yr[["agedays"]]) #
This function wraps a learner in such a way that the behavior of
learner$chain
is modified to use a new function definition.
learner$train
and learner$predict
are unaffected.
customize_chain(learner, chain_fun)
customize_chain(learner, chain_fun)
learner |
A |
chain_fun |
A function with arguments |
R6Class
object.
Lrnr_base
object with methods for training and
prediction
params
A list of learners to chain.
new(...)
This method is used to create a pipeline of
learners. Arguments should be individual Learner
s, in the order they
should be applied.
Other Learners:
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
Estimates the cross-validated risk for a given learner and evaluation function, which can be either a loss or a risk function.
cv_risk(learner, eval_fun = NULL, coefs = NULL)
cv_risk(learner, eval_fun = NULL, coefs = NULL)
learner |
A trained learner object. |
eval_fun |
A valid loss or risk function. See
|
coefs |
A |
Cross-validated Super Learner
cv_sl(lrnr_sl, eval_fun)
cv_sl(lrnr_sl, eval_fun)
lrnr_sl |
a |
eval_fun |
the evaluation function, either a loss or risk function, for evaluating the Super Learner's predictions. |
A list of containing the following: the table of cross-validated risk estimates of the super learner and the candidate learners used to construct it, and either a matrix of coefficients for the super learner on each fold or a list for the metalearner fit on each fold.
## Not run: data(cpp_imputed) cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage"), outcome = "haz" ) glm_lrn <- Lrnr_glm$new() ranger_lrn <- Lrnr_ranger$new() lasso_lrn <- Lrnr_glmnet$new() sl <- Lrnr_sl$new( learners = list(glm_lrn, ranger_lrn, lasso_lrn), cv_control = list(V = 5), verbose = FALSE ) cv_sl_object <- cv_sl( lrnr_sl = sl, eval_fun = loss_squared_error ) ## End(Not run)
## Not run: data(cpp_imputed) cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage"), outcome = "haz" ) glm_lrn <- Lrnr_glm$new() ranger_lrn <- Lrnr_ranger$new() lasso_lrn <- Lrnr_glmnet$new() sl <- Lrnr_sl$new( learners = list(glm_lrn, ranger_lrn, lasso_lrn), cv_control = list(V = 5), verbose = FALSE ) cv_sl_object <- cv_sl( lrnr_sl = sl, eval_fun = loss_squared_error ) ## End(Not run)
Helper functions to debug sl3 Learners
debug_train(learner, once = FALSE) debugonce_train(learner) debug_predict(learner, once = FALSE) debugonce_predict(learner) sl3_debug_mode(enabled = TRUE) undebug_learner(learner)
debug_train(learner, once = FALSE) debugonce_train(learner) debug_predict(learner, once = FALSE) debugonce_predict(learner) sl3_debug_mode(enabled = TRUE) undebug_learner(learner)
learner |
the learner to debug |
once |
if true, use |
enabled |
enable/disable the use of future (debugging is easier without futures) |
A sensible metalearner is chosen based on the outcome type.
default_metalearner(outcome_type)
default_metalearner(outcome_type)
outcome_type |
a Variable_Type object |
For binary and continuous outcome types, the default metalearner is
non-negative least squares (NNLS) regression (Lrnr_nnls
), and
for others the metalearner is Lrnr_solnp
with an appropriate
loss and combination function, shown in the table below.
Outcome Type | Combination Function | Loss Function |
categorical | metalearner_linear_multinomial | loss_loglik_multinomial |
multivariate | metalearner_linear_multivariate | loss_squared_error_multivariate |
Definition of h2o
type models. This function is for internal use only.
This function uploads input data into an h2o.Frame
, allowing the data
to be subset to the task$X
data.table
by a smaller set of
covariates if spec'ed in params.
This learner provides faster fitting procedures for generalized linear models
by using the h2o
package and the h2o.glm
method.
The h2o Platform fits GLMs in a computationally efficient manner. For details
on the procedure, consult the documentation of the h2o
package.
define_h2o_X(task, outcome_type = NULL)
define_h2o_X(task, outcome_type = NULL)
task |
An object of type |
outcome_type |
An object of type |
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
intercept=TRUE
If TRUE
, and intercept term is
included.
standardize=TRUE
Standardize covariates to have mean = 0 and SD = 1.
lambda=0
Lasso Parameter.
max_iterations=100
Maximum number of iterations.
ignore_const_columns=FALSE
If TRUE
, drop constant
covariate columns
missing_values_handling="Skip"
How to handle missing values.
...
Other arguments passed to h2o.glm
.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
undocumented_learner
## Not run: library(h2o) suppressWarnings(h2o.init()) # load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train h2o glm learner and make predictions lrnr_h2o <- Lrnr_h2o_glm$new() lrnr_h2o_fit <- lrnr_h2o$train(task) lrnr_h2o_pred <- lrnr_h2o_fit$predict() ## End(Not run)
## Not run: library(h2o) suppressWarnings(h2o.init()) # load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train h2o glm learner and make predictions lrnr_h2o <- Lrnr_h2o_glm$new() lrnr_h2o_fit <- lrnr_h2o$train(task) lrnr_h2o_pred <- lrnr_h2o_fit$predict() ## End(Not run)
Learner helpers
delayed_make_learner(learner_class, ...) learner_train(learner, task, trained_sublearners) delayed_learner_train(learner, task, name = NULL) learner_fit_predict(learner_fit, task = NULL) delayed_learner_fit_predict(learner_fit, task = NULL) learner_fit_chain(learner_fit, task = NULL) delayed_learner_fit_chain(learner_fit, task = NULL) learner_subset_covariates(learner, task) learner_process_formula(learner, task) delayed_learner_subset_covariates(learner, task) delayed_learner_process_formula(learner, task)
delayed_make_learner(learner_class, ...) learner_train(learner, task, trained_sublearners) delayed_learner_train(learner, task, name = NULL) learner_fit_predict(learner_fit, task = NULL) delayed_learner_fit_predict(learner_fit, task = NULL) learner_fit_chain(learner_fit, task = NULL) delayed_learner_fit_chain(learner_fit, task = NULL) learner_subset_covariates(learner, task) learner_process_formula(learner, task) delayed_learner_subset_covariates(learner, task) delayed_learner_process_formula(learner, task)
learner_class |
The learner class to instantiate. |
... |
Parameters with which to instantiate the learner. |
learner |
A learner object to fit to the task. |
task |
The task on which to fit. |
trained_sublearners |
Any data obtained from a |
name |
a more detailed name for this delayed task, if necessary |
learner_fit |
a learner object that has already been fit |
Simulated data with continuous exposure, used with examples of conditional density estimation.
data(density_dat)
data(density_dat)
data(density_dat) head(density_dat) #
data(density_dat) head(density_dat) #
replicates the functionality of model.matrix, but faster
Replicates the functionality of model.matrix
, but faster
factor_to_indicators(x, ind_ref_mat = NULL) dt_expand_factors(dt)
factor_to_indicators(x, ind_ref_mat = NULL) dt_expand_factors(dt)
x |
the factor to expand |
ind_ref_mat |
a matrix used for expansion, if NULL generated automatically |
dt |
the dt to expand |
randomForest
and order in decreasing order of
importance.Function that takes a cross-validated fit (i.e., cross-validated learner
that has already been trained on a task), which could be a cross-validated
single learner or super learner, and generates a risk-based variable
importance score for either each covariate or each group of covariates in
the task. This function outputs a data.table
, where each row
corresponds to the risk difference or the risk ratio between the following
two risks: the risk when a covariate (or group of covariates) is permuted or
removed, and the original risk (i.e., when all covariates are included as
they were in the observed data). A higher risk ratio/difference corresponds
to a more important covariate/group. A plot can be generated from the
returned data.table
by calling companion function
importance_plot
.
importance(fit, eval_fun = NULL, fold_number = "validation", type = c("remove", "permute"), importance_metric = c("difference", "ratio"), covariate_groups = NULL) importance(fit, eval_fun = NULL, fold_number = "validation", type = c("remove", "permute"), importance_metric = c("difference", "ratio"), covariate_groups = NULL)
importance(fit, eval_fun = NULL, fold_number = "validation", type = c("remove", "permute"), importance_metric = c("difference", "ratio"), covariate_groups = NULL) importance(fit, eval_fun = NULL, fold_number = "validation", type = c("remove", "permute"), importance_metric = c("difference", "ratio"), covariate_groups = NULL)
fit |
A trained cross-validated (CV) learner (such as a CV stack or super learner), from which cross-validated predictions can be generated. |
eval_fun |
The evaluation function (risk or loss function) for
evaluating the risk. Defaults vary based on the outcome type, matching
defaults in |
fold_number |
The fold number to use for obtaining the predictions from
the fit. Either a positive integer for obtaining predictions from a
specific fold's fit; |
type |
Which method should be used to obscure the relationship between
each covariate / covariate group and the outcome? When |
importance_metric |
Either |
covariate_groups |
Optional named list covariate groups which will invoke variable importance evaluation at the group-level, by removing/permuting all covariates in the same group together. If covariates in the task are not specified in the list of groups, then those covariates will be added as additional single-covariate groups. |
A data.table
of variable importance for each covariate.
## Not run: # define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with default metalearner sl <- Lrnr_sl$new(lrnr_stack) sl_fit <- sl$train(task) importance_result <- importance(sl_fit) importance_result # importance with groups of covariates groups <- list( scores = c("apgar1", "apgar5"), maternal = c("parity", "mage", "meducyrs") ) importance_result_groups <- importance(sl_fit, covariate_groups = groups) importance_result_groups ## End(Not run)
## Not run: # define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with default metalearner sl <- Lrnr_sl$new(lrnr_stack) sl_fit <- sl$train(task) importance_result <- importance(sl_fit) importance_result # importance with groups of covariates groups <- list( scores = c("apgar1", "apgar5"), maternal = c("parity", "mage", "meducyrs") ) importance_result_groups <- importance(sl_fit, covariate_groups = groups) importance_result_groups ## End(Not run)
Variable Importance Plot
importance_plot(x, nvar = min(30, nrow(x)))
importance_plot(x, nvar = min(30, nrow(x)))
x |
The two-column |
nvar |
The maximum number of predictors to be plotted. Defaults to the
minimum between 30 and the number of rows in |
A ggplot
of variable importance.
## Not run: # define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with default metalearner sl <- Lrnr_sl$new(lrnr_stack) sl_fit <- sl$train(task) importance_result <- importance(sl_fit) importance_plot(importance_result) ## End(Not run)
## Not run: # define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with default metalearner sl <- Lrnr_sl$new(lrnr_stack) sl_fit <- sl$train(task) importance_result <- importance(sl_fit) importance_plot(importance_result) ## End(Not run)
Inverse CDF Sampling
inverse_sample(n_samples, cdf = NULL, pdf = NULL)
inverse_sample(n_samples, cdf = NULL, pdf = NULL)
n_samples |
If |
cdf |
A list with x and y representing the cdf |
pdf |
A list with x and y representing the pdf |
Loss functions for use in evaluating learner fits.
loss_squared_error(pred, observed) loss_loglik_true_cat(pred, observed) loss_loglik_binomial(pred, observed) loss_loglik_multinomial(pred, observed) loss_squared_error_multivariate(pred, observed)
loss_squared_error(pred, observed) loss_loglik_true_cat(pred, observed) loss_loglik_binomial(pred, observed) loss_loglik_multinomial(pred, observed) loss_squared_error_multivariate(pred, observed)
pred |
A vector of predicted values |
observed |
A vector of observed values |
A vector of loss values
Assumes predicted probabilities are "packed" into a single vector.
This learner supports autoregressive integrated moving average model for univariate time-series.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
order
: An optional specification of the non-seasonal
part of the ARIMA model; the three integer components (p, d, q) are the
AR order, the degree of differencing, and the MA order. If order is
specified, then arima
will be called; otherwise,
auto.arima
will be used to fit the "best" ARIMA
model according to AIC (default), AIC or BIC. The information criterion
to be used in auto.arima
model selection can be
modified by specifying ic
argument.
num_screen = 5
: The top n number of "most impotant" variables to
retain.
...
: Other parameters passed to arima
or
auto.arima
function, depending on whether or not
order
argument is provided.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(origami) data(bsds) folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) arima_lrnr <- make_learner(Lrnr_arima) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) arima_fit <- arima_lrnr$train(train_task) arima_preds <- arima_fit$predict(valid_task)
library(origami) data(bsds) folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) arima_lrnr <- make_learner(Lrnr_arima) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) arima_fit <- arima_lrnr$train(train_task) arima_preds <- arima_fit$predict(valid_task)
This learner implements Bayesian Additive Regression Trees via
bartMachine (described in Kapelner and Bleich (2016))
and the function bartMachine
.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
...
: Parameters passed to bartMachine
.
See it's documentation for details.
Kapelner A, Bleich J (2016). “bartMachine: Machine Learning with Bayesian Additive Regression Trees.” Journal of Statistical Software, 70(4), 1–40. doi:10.18637/jss.v070.i04.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: # set up ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # fit a bartMachine model and predict from it bartMachine_learner <- make_learner(Lrnr_bartMachine) bartMachine_fit <- bartMachine_learner$train(task) preds <- bartMachine_fit$predict() ## End(Not run)
## Not run: # set up ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # fit a bartMachine model and predict from it bartMachine_learner <- make_learner(Lrnr_bartMachine) bartMachine_fit <- bartMachine_learner$train(task) preds <- bartMachine_fit$predict() ## End(Not run)
Generally this base learner class should not be instantiated. Intended to be an abstract class, although abstract classes are not explicitly supported by R6. All learners support the methods and fields documented below. For more information on a particular learner, see its help file.
make_learner(learner_class, ...)
make_learner(learner_class, ...)
learner_class |
The learner class to instantiate. |
... |
Parameters with which to instantiate the learner. See Parameters section below. |
R6Class
object.
Learner object with methods for training and prediction
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
train(task)
Trains learner to a task using delayed
. Returns a fit object
task
: The task to use for training
base_train(task, trained_sublearners = NULL)
Trains learner to a task. Returns a fit object
task
: The task to use for training
trained_sublearners
: Any sublearners previous trained. Almost always NULL
predict(task=NULL)
Generates predictions using delayed
. Returns a prediction vector or matrix.
task
: The task to use for prediction. If no task is provided, it will use the task used for training.
base_predict(task=NULL)
Generates predictions. Returns a prediction vector or matrix.
task
: The task to use for prediction. If no task is provided, it will use the task used for training.
chain(task=NULL)
Generates a chained task using delayed
task
: The task to use for chaining If no task is provided, it will use the task used for training.
base_chain(task=NULL)
Generates a chained task
task
: The task to use for chaining If no task is provided, it will use the task used for training.
is_trained
TRUE
if this is a learner fit, not an untrained learner
fit_object
The internal fit object
name
The learner name
learner_uuid
A unique identifier of this learner, but common to all fits of this learner
fit_uuid
A unique identifier of this learner fit. NULL
if this is an untrained learner
params
A list of learner parameters, as specified on construction
training_task
The task used for training. NULL
if this is an untrained learner
training_outcome_type
The outcome_type of the task used for training. NULL
if this is an untrained learner
properties
The properties supported by this learner
coefficients
Fit coefficients, if this learner has coefficients. NULL
otherwise, or if this is an untrained learner
These methods are primiarily for internal use only. They're not recommended for public consumption.
subset_covariates(task)
Returns a task with covariates subsetted using the covariates
parameter.
task
: The task to subset
get_outcome_type(task)
Mediates between the task outcome_type and parameter outcome_type. If a parameter outcome_type was specified, returns that. Otherwise, returns the task$outcome_type.
task
: The task for which to determine the outcome_type
train_sublearners(task)
Trains sublearners to a task using delayed
. Returns a delayed sublearner fit.
task
: The task to use for training
set_train(fit_object, training_task)
Converts a learner to a learner fit.
fit_object
: The fit object generated by a call to private$.train
training_task
: The task used for training
assert_trained()
Throws an error if this learner does not have a fit_object
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
This learner provides fitting procedures for bayesian generalized linear
models (GLMs) from ar using bayesglm.fit
. The GLMs
fitted in this way can incorporate independent normal, t, or Cauchy prior
distribution for the coefficients.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
intercept = TRUE
: A logical
specifying whether an intercept
term should be included in the fitted null model.
...
: Other parameters passed to bayesglm.fit
.
See it's documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome ) # fit and predict from a bayesian GLM bayesglm_lrnr <- make_learner(Lrnr_bayesglm) bayesglm_fit <- bayesglm_lrnr$train(task) bayesglm_preds <- bayesglm_fit$predict(task)
data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome ) # fit and predict from a bayesian GLM bayesglm_lrnr <- make_learner(Lrnr_bayesglm) bayesglm_fit <- bayesglm_lrnr$train(task) bayesglm_preds <- bayesglm_fit$predict(task)
This learner bounds predictions. Intended for use as part of
Pipeline
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
bound
: Either a vector of length two, with lower and upper
bounds, or a vector of length 1 with a lower bound, and the upper will
be set symmetrically as 1 - the lower bound. Both bounds must be
provided when the variable type of the task's outcome is continuous.
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() lrnr_stack <- make_learner(Stack, lasso_lrnr, glm_lrnr) lrnr_bound <- Lrnr_bound$new(c(-2, 2)) stack_bounded_preds <- Pipeline$new(lrnr_stack, lrnr_bound) metalrnr_discrete_MSE <- Lrnr_cv_selector$new(loss_squared_error) discrete_sl <- Lrnr_sl$new( learners = stack_bounded_preds, metalearner = metalrnr_discrete_MSE ) discrete_sl_fit <- discrete_sl$train(task) preds <- discrete_sl_fit$predict() range(preds)
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() lrnr_stack <- make_learner(Stack, lasso_lrnr, glm_lrnr) lrnr_bound <- Lrnr_bound$new(c(-2, 2)) stack_bounded_preds <- Pipeline$new(lrnr_stack, lrnr_bound) metalrnr_discrete_MSE <- Lrnr_cv_selector$new(loss_squared_error) discrete_sl <- Lrnr_sl$new( learners = stack_bounded_preds, metalearner = metalrnr_discrete_MSE ) discrete_sl_fit <- discrete_sl$train(task) preds <- discrete_sl_fit$predict() range(preds)
This learner uses the caret package's train
function to automatically tune a predictive model. It does this by defining
a grid of model-specific tuning parameters; fitting the model according to
each tuning parameter specification, to establish a set of models fits;
calculating a resampling-based performance measure each variation; and
then selecting the model with the best performance.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
method
: A string specifying which caret classification or
regression model to use. Possible models can be found using
names(caret::getModelInfo())
. Information about a model,
including the parameters that are tuned, can be found using
caret::modelLookup()
, e.g.,
caret::modelLookup("xgbLinear")
. Consult the caret
package's documentation on train
for more details.
metric = NULL
: An optional string specifying the summary metric to
be used to select the optimal model. If not specified, it will be set
to "RMSE" for continuous outcomes and "Accuracy" for categorical and
binary outcomes. Other options include "MAE", "Kappa", "Rsquared" and
"logLoss". Regression models are defined when metric
is set as
"RMSE", "logLoss", "Rsquared", or "MAE". Classification models are
defined when metric
is set as "Accuracy" or "Kappa". Custom
performance metrics can also be used. Consult the caret
package's
train
documentation for more details.
trControl = list(method = "cv", number = 10)
: A list for specifying
the arguments for trainControl
object. If not
specified, it will consider "cv" with 10 folds as the resampling method,
instead of caret
's default resampling method, "boot". For a
detailed description, consult the caret
package's documentation
for train
and trainControl
.
factor_binary_outcome = TRUE
: Logical indicating whether a binary
outcome should be defined as a factor instead of a numeric. This
only needs to be modified to FALSE
in the following uncommon
instance: when metric
is specified by the user, metric
defines a regression model, and the task's outcome is binary. Note that
train
could throw warnings/errors when regression
models are considered for binary outcomes; this argument should only
be modified by advanced users in niche settings.
...
: Other parameters passed to train
and
additional arguments defined in Lrnr_base
, such as
params
like formula
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") autotuned_RF_lrnr <- Lrnr_caret$new(method = "rf") set.seed(693) autotuned_RF_fit <- autotuned_RF_lrnr$train(task) autotuned_RF_predictions <- autotuned_RF_fit$predict() ## End(Not run)
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") autotuned_RF_lrnr <- Lrnr_caret$new(method = "rf") set.seed(693) autotuned_RF_fit <- autotuned_RF_lrnr$train(task) autotuned_RF_predictions <- autotuned_RF_fit$predict() ## End(Not run)
A wrapper around any learner that generates cross-validate predictions
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner
The learner to wrap
folds=NULL
An origami
folds object. If NULL
,
folds from the task are used
full_fit=FALSE
If TRUE
, also fit the underlying learner on the full data.
This can then be accessed with predict_fold(task, fold_number="full")
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(origami) # load example data data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) glm_learner <- Lrnr_glm$new() cv_glm <- Lrnr_cv$new(glm_learner, folds = make_folds(cpp_imputed, V = 10)) # train cv learner cv_glm_fit <- cv_glm$train(task) preds <- cv_glm_fit$predict()
library(origami) # load example data data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) glm_learner <- Lrnr_glm$new() cv_glm <- Lrnr_cv$new(glm_learner, folds = make_folds(cpp_imputed, V = 10)) # train cv learner cv_glm_fit <- cv_glm$train(task) preds <- cv_glm_fit$predict()
This learner is the cross-validated (CV) selector, and it is intended
for use as the metalearner
in Lrnr_sl
.
Lrnr_cv_selector
selects the candidate with the best CV
predictive performance (i.e., lowest CV risk). Specifically,
it aims to optimize the CV risk, and it is defined by a constrained
weighted combination: the weights can either be zero or one, and they
must sum to one. Lrnr_cv_selector
optimizes the CV
predictive performance under these constraints by assigning the
candidate with the best CV predictive performance a weight of one
and all others a weight of zero. Thus, Lrnr_cv_selector
and its predictions will be identical to the best-performing
candidate learner and its predictions; this is why we say
Lrnr_cv_selector
"selects" the candidate with the best
CV predictive performance.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
eval_function = loss_squared_error
: A function that takes as input
a vector of predicted values as its first argument and a vector of
observed outcome values as its second argument, and then returns a
vector of losses or a numeric risk. See loss_functions and
risk_functions for options.
folds = NULL
: Optional origami-structured cross-validation
folds from the task for training Lrnr_sl
, e.g.,
task$folds
. This argument is only required and utilized
when eval_function
is not a loss function, since the risk
has to be calculated on each validation set separately and then
averaged across them in order to estimate the cross-validated risk.
This argument is ignored when eval_function
is a loss.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") hal_lrnr <- Lrnr_hal9001$new( max_degree = 1, num_knots = c(20, 10), smoothness_orders = 0 ) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(hal_lrnr, lasso_lrnr, glm_lrnr, ranger_lrnr) names(lrnrs) <- c("hal", "lasso", "glm", "ranger") lrnr_stack <- make_learner(Stack, lrnrs) metalrnr_discrete_MSE <- Lrnr_cv_selector$new(loss_squared_error) discrete_sl <- Lrnr_sl$new( learners = lrnr_stack, metalearner = metalrnr_discrete_MSE ) discrete_sl_fit <- discrete_sl$train(task) discrete_sl_fit$cv_risk(loss_squared_error) ## End(Not run)
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") hal_lrnr <- Lrnr_hal9001$new( max_degree = 1, num_knots = c(20, 10), smoothness_orders = 0 ) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(hal_lrnr, lasso_lrnr, glm_lrnr, ranger_lrnr) names(lrnrs) <- c("hal", "lasso", "glm", "ranger") lrnr_stack <- make_learner(Stack, lrnrs) metalrnr_discrete_MSE <- Lrnr_cv_selector$new(loss_squared_error) discrete_sl <- Lrnr_sl$new( learners = lrnr_stack, metalearner = metalrnr_discrete_MSE ) discrete_sl_fit <- discrete_sl$train(task) discrete_sl_fit$cv_risk(loss_squared_error) ## End(Not run)
This learner implements BART algorithm in C++, using the dbarts
package.
BART is a Bayesian sum-of-trees model in which each tree is constrained
by a prior to be a weak learner.
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
x.test
Explanatory variables for test (out of sample) data.
bart
will generate draws of for each
which is a
row of
x.test
.
sigest
For continuous response models, an estimate of the
error variance, , used to calibrate an inverse-chi-squared
prior used on that parameter. If not supplied, the least-squares estimate
is derived instead. See
sigquant
for more information. Not
applicable when is binary.
sigdf
Degrees of freedom for error variance prior. Not
applicable when is binary.
sigquant
The quantile of the error variance prior that the
rough estimate (sigest
) is placed at. The closer the quantile is
to 1, the more aggresive the fit will be as you are putting more prior
weight on error standard deviations () less than the rough
estimate. Not applicable when
is binary.
k
For numeric ,
k
is the number of prior
standard deviations is away from
. The response (
y.train
) is internally scaled to range from
to
. For binary
,
k
is the number of
prior standard deviations is away from
. In
both cases, the bigger
is, the more conservative the fitting will
be.
power
Power parameter for tree prior.
base
Base parameter for tree prior.
binaryOffset
sed for binary . When present, the model
is
, allowing fits with probabilities shrunk
towards values other than
.
weights
An optional vector of weights to be used in the
fitting process. When present, BART fits a model with observations
,
where
is the unknown function.
ntree
The number of trees in the sum-of-trees formulation.
ndpost
The number of posterior draws after burn in,
ndpost / keepevery
will actually be returned.
nskip
Number of MCMC iterations to be treated as burn in.
printevery
As the MCMC runs, a message is printed every
printevery
draws.
keepevery
Every keepevery
draw is kept to be returned
to the user. Useful for “thinning” samples.
keeptrainfits
If TRUE
the draws of for
corresponding to the rows of
x.train
are returned.
usequants
When TRUE
, determine tree decision rules
using estimated quantiles derived from the x.train
variables. When
FALSE
, splits are determined using values equally spaced across
the range of a variable. See details for more information.
numcut
The maximum number of possible values used in decision
rules (see usequants
, details). If a single number, it is recycled
for all variables; otherwise must be a vector of length equal to
ncol(x.train)
. Fewer rules may be used if a covariate lacks enough
unique values.
printcutoffs
The number of cutoff rules to printed to screen before the MCMC is run. Given a single integer, the same value will be used for all variables. If 0, nothing is printed.
verbose
Logical; if FALSE
supress printing.
nchain
Integer specifying how many independent tree sets and fits should be calculated.
nthread
Integer specifying how many threads to use. Depending on the CPU architecture, using more than the number of chains can degrade performance for small/medium data sets. As such some calculations may be executed single threaded regardless.
combinechains
Logical; if TRUE
, samples will be
returned in arrays of dimensions equal to nchain
ndpost
number of observations.
keeptrees
Logical; must be TRUE
in order to use
predict
with the result of a bart
fit.
keepcall
Logical; if FALSE
, returned object will have
call
set to call("NULL")
, otherwise the call used to
instantiate BART.
serializeable
Logical; if TRUE
, loads the trees into R memory
so the fit object can be saved and loaded. See the section on "Saving"
in bart NB: This is not currently working
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
set.seed(123) # load example data data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") dbart_learner <- make_learner(Lrnr_dbarts, ndpost = 200) # train dbart learner and make predictions dbart_fit <- dbart_learner$train(task) preds <- dbart_fit$predict()
set.seed(123) # load example data data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") dbart_learner <- make_learner(Lrnr_dbarts, ndpost = 200) # train dbart learner and make predictions dbart_fit <- dbart_learner$train(task) preds <- dbart_fit$predict()
This learner adds interactions to its chained task. Intended for use in a Pipeline, defining a coupling of the interactions with the learner.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
interactions
: A list whose elements are a character
vector of covariates from which to create interaction terms.
warn_on_existing
: If TRUE
, produce a warning if there
is already a column with a name matching this given interaction term.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn") outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) interactions <- list(c("apgar1", "parity"), c("apgar5", "parity")) lrnr_interact <- Lrnr_define_interactions$new( list(c("apgar1", "parity"), c("apgar5", "parity")) ) lrnr_glm <- Lrnr_glm$new() interaction_pipeline_glm <- make_learner(Pipeline, lrnr_interact, lrnr_glm) fit <- interaction_pipeline_glm$train(task)
data(cpp_imputed) covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn") outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) interactions <- list(c("apgar1", "parity"), c("apgar5", "parity")) lrnr_interact <- Lrnr_define_interactions$new( list(c("apgar1", "parity"), c("apgar5", "parity")) ) lrnr_glm <- Lrnr_glm$new() interaction_pipeline_glm <- make_learner(Pipeline, lrnr_interact, lrnr_glm) fit <- interaction_pipeline_glm$train(task)
This learner discretizes a continuous density and then fits a categorical learner
R6Class
object.
Lrnr_base
object with methods for training and
prediction
categorical_learner
The learner to wrap.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train density discretize learner and make predictions lrnr_discretize <- Lrnr_density_discretize$new( categorical_learner = Lrnr_glmnet$new() ) lrnr_discretize_fit <- lrnr_discretize$train(task) lrnr_discretize_pred <- lrnr_discretize_fit$predict()
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train density discretize learner and make predictions lrnr_discretize <- Lrnr_density_discretize$new( categorical_learner = Lrnr_glmnet$new() ) lrnr_discretize_fit <- lrnr_discretize$train(task) lrnr_discretize_pred <- lrnr_discretize_fit$predict()
This learner assumes a mean model with homoscedastic errors: Y ~ E(Y|W) + epsilon. E(Y|W) is fit using any mean learner, and then the errors are fit with kernel density estimation.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
binomial_learner
The learner to wrap.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train density hse learner and make predictions lrnr_density_hse <- Lrnr_density_hse$new(mean_learner = Lrnr_glm$new()) fit_density_hse <- lrnr_density_hse$train(task) preds_density_hse <- fit_density_hse$predict()
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train density hse learner and make predictions lrnr_density_hse <- Lrnr_density_hse$new(mean_learner = Lrnr_glm$new()) fit_density_hse <- lrnr_density_hse$train(task) preds_density_hse <- fit_density_hse$predict()
This learner assumes a mean model with homoscedastic errors: Y ~ E(Y|W) + epsilon. E(Y|W) is fit using any mean learner, and then the errors are fit with kernel density estimation.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
binomial_learner
The learner to wrap.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train density hse learner and make predictions lrnr_density_semi <- Lrnr_density_semiparametric$new( mean_learner = Lrnr_glm$new() ) lrnr_density_semi_fit <- lrnr_density_semi$train(task) lrnr_density_semi_pred <- lrnr_density_semi_fit$predict()
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train density hse learner and make predictions lrnr_density_semi <- Lrnr_density_semiparametric$new( mean_learner = Lrnr_glm$new() ) lrnr_density_semi_fit <- lrnr_density_semi$train(task) lrnr_density_semi_pred <- lrnr_density_semi_fit$predict()
This learner provides fitting procedures for building regression models thru
the spline regression techniques described in
Friedman (1991) and
Friedman (1993), via earth and the function
earth
.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
degree
: A numeric
specifying the maximum degree of
interactions to be used in the model. This defaults to 2, specifying
up through one-way interaction terms. Note that this differs from the
default of earth
.
penalty
: Generalized Cross Validation (GCV) penalty per knot.
Defaults to 3 as per the recommendation for degree
> 1 in the
documentation of earth
. Special values (for use
by knowledgeable users): The value 0 penalizes only terms, not knots.
The value -1 translates to no penalty.
pmethod
: Pruning method, defaulting to "backward"
. Other
options include "none"
, "exhaustive"
, "forward"
,
"seqrep"
, "cv"
.
nfold
: Number of cross-validation folds. The default is 0, for no
cross-validation.
ncross
: Only applies if nfold
> 1, indicating the number
of cross-validation rounds. Each cross-validation has nfold
folds. Defaults to 1.
minspan
: Minimum number of observations between knots.
endspan
: Minimum number of observations before the first and
after the final knot.
...
: Other parameters passed to earth
. See
its documentation for details.
Friedman JH (1991).
“Multivariate adaptive regression splines.”
The Annals of Statistics, 1–67.
Friedman JH (1993).
“Fast MARS.”
Stanford University.
https://doi.org/10.1214/aos/1176347963.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome ) # fit and predict from a MARS model earth_lrnr <- make_learner(Lrnr_earth) earth_fit <- earth_lrnr$train(task) earth_preds <- earth_fit$predict(task)
data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome ) # fit and predict from a MARS model earth_lrnr <- make_learner(Lrnr_earth) earth_fit <- earth_lrnr$train(task) earth_preds <- earth_fit$predict(task)
This learner supports exponential smoothing models using
ets
.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
model="ZZZ"
: Three-character string identifying method. In all
cases, "N"=none, "A"=additive, "M"=multiplicative, and "Z"=automatically
selected. The first letter denotes the error type, second letter denotes
the trend type, third letter denotes the season type. For example, "ANN"
is simple exponential smoothing with additive errors, "MAM" is
multiplicative Holt-Winters' methods with multiplicative errors, etc.
damped=NULL
: If TRUE, use a damped trend (either additive or
multiplicative). If NULL, both damped and non-damped trends will be tried
and the best model (according to the information criterion ic) returned.
alpha=NULL
: Value of alpha. If NULL, it is estimated.
beta=NULL
: Value of beta. If NULL, it is estimated.
gamma=NULL
: Value of gamma. If NULL, it is estimated.
phi=NULL
: Value of phi. If NULL, it is estimated.
lambda=NULL
: Box-Cox transformation parameter. Ignored if
NULL
. When lambda is specified, additive.only
is set to
TRUE
.
additive.only=FALSE
: If TRUE
, will only consider
additive models.
biasadj=FALSE
: Use adjusted back-transformed mean for Box-Cox
transformations.
lower=c(rep(1e-04, 3), 0.8)
: Lower bounds for the parameters
(alpha, beta, gamma, phi).
upper=c(rep(0.9999,3), 0.98)
: Upper bounds for the parameters
(alpha, beta, gamma, phi)
opt.crit="lik"
: Optimization criterion.
nmse=3
: Number of steps for average multistep MSE (1 <= nmse
<= 30).
bounds="both"
" Type of parameter space to impose: "usual"
indicates all parameters must lie between specified lower and upper
bounds; "admissible" indicates parameters must lie in the admissible
space; "both" (default) takes the intersection of these regions.
ic="aic"
: Information criterion to be used in model
selection.
restrict=TRUE
: If TRUE, models with infinite variance will not
be allowed.
allow.multiplicative.trend=FALSE
: If TRUE, models with
multiplicative trend are allowed when searching for a model.
use.initial.values=FALSE
: If TRUE
and model is of class
"ets", then the initial values in the model are also not re-estimated.
n.ahead
: The forecast horizon. If not specified, returns
forecast of size task$X
.
freq=1
: the number of observations per unit of time.
...
: Other parameters passed to ets.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(origami) data(bsds) folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) expSmooth_lrnr <- make_learner(Lrnr_expSmooth) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) expSmooth_fit <- expSmooth_lrnr$train(train_task) expSmooth_preds <- expSmooth_fit$predict(valid_task)
library(origami) data(bsds) folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) expSmooth_lrnr <- make_learner(Lrnr_expSmooth) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) expSmooth_fit <- expSmooth_lrnr$train(train_task) expSmooth_preds <- expSmooth_fit$predict(valid_task)
This metalearner provides fitting procedures for any pairing of loss or risk
function and metalearner function, subject to constraints. The optimization
problem is solved by making use of the ga
function in the
GA R package. For further consult the documentation of this package.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
learner_function = metalearner_linear
: A function(alpha, X) that
takes a vector of covariates and a matrix of data and combines them
into a vector of predictions. See metalearners
for
options.
eval_function = loss_squared_error
: A function(pred, truth) that
takes prediction and truth vectors and returns a loss vector or a risk
scalar. See loss_functions
and
risk_functions
for options and more detail.
make_sparse = TRUE
: If TRUE
, zeros out small alpha values.
convex_combination = TRUE
: If TRUE
, constrain alpha to sum
to 1.
maxiter = 100
: The maximum number of iterations to run before the
GA search is halted.
run = 10
: The number of consecutive generations without any
improvement in the best fitness value before the GA is stopped.
optim = TRUE
: A logical determining whether or not a local search
using general-purpose optimization algorithms should be used. Argument
optimArgs
of ga
provides further details and
finer control.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with GA metalearner ga <- Lrnr_ga$new(maxiter=10) sl <- Lrnr_sl$new(lrnr_stack, ga) sl_fit <- sl$train(task)
# define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with GA metalearner ga <- Lrnr_ga$new(maxiter=10) sl <- Lrnr_sl$new(lrnr_stack, ga) sl_fit <- sl$train(task)
This learner provides fitting procedures for generalized additive models,
using the routines from mgcv through a call to the function
gam
. The mgcv package and the use of GAMs are
described thoroughly (with examples) in Wood (2017),
while Hastie and Tibshirani (1990) also provided an earlier quite
thorough look at GAMs.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
formula
: An optional argument specifying the formula of GAM.
Input type can be formula or string, or a list of them. If not
specified, continuous covariates will be smoothened with the smooth
terms represented using "penalized thin plate regression splines". For
a more detailed description, please consult the documentation for
gam
.
family
: An optional argument specifying the family of the GAM.
See family
and family.mgcv
for a list of available family functions. If left unspecified, it will
be inferred depending on the detected type of the outcome. For now,
GAM supports binomial and gaussian outcome types, if formula
is
unspecified. For a more detailed description of this argument, please
consult the documentation of gam
.
method
: An optional argument specifying the method for smoothing
parameter selection. The default is global cross-validation (GCV). For
more detaileds on this argument, consult the documentation of
gam
.
...
: Other parameters passed to gam
. See its
documentation for details.
Hastie TJ, Tibshirani RJ (1990).
Generalized additive models, volume 43.
CRC press.
Wood SN (2017).
Generalized additive models: an introduction with R.
CRC press.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults gam_lrnr <- Lrnr_gam$new() gam_fit <- gam_lrnr$train(cpp_task) gam_preds <- gam_fit$predict()
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults gam_lrnr <- Lrnr_gam$new() gam_fit <- gam_lrnr$train(cpp_task) gam_preds <- gam_fit$predict()
This learner provides fitting procedures for generalized boosted regression
trees, using the routines from gbm, through a call to the function
gbm.fit
. Though a variety of gradient boosting strategies
have seen popularity in machine learning, a few of the early methodological
descriptions were given by Friedman (2001) and
Friedman (2002).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
n.trees
: An integer specifying the total number of trees to fit.
This is equivalent to the number of iterations and the number of basis
functions in the additive expansion. The default is 10000.
interaction.depth
: An integer specifying the maximum depth of
each tree (i.e., the highest level of allowed variable interactions).
A value of 1 implies an additive model, while a value of 2 implies a
model with up to 2-way interactions, etc. The default is 2.
shrinkage
: A shrinkage parameter applied to each tree in the
expansion. Also known as the learning rate or step-size reduction;
values of 0.001 to 0.1 have been found to usually work, but a smaller
learning rate typically requires more trees. The default is 0.001.
...
: Other parameters passed to gbm
. See its
documentation for details.
Friedman JH (2001).
“Greedy function approximation: a gradient boosting machine.”
Annals of statistics, 1189–1232.
Friedman JH (2002).
“Stochastic gradient boosting.”
Computational statistics & data analysis, 38(4), 367–378.
Lrnr_xgboost for the extreme gradient boosted tree models from the Xgboost framework (via the xgboost package) and Lrnr_lightgbm for the faster and more efficient gradient boosted trees from the LightGBM framework (via the lightgbm package).
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults gbm_lrnr <- Lrnr_gbm$new() gbm_fit <- gbm_lrnr$train(cpp_task) gbm_preds <- gbm_fit$predict()
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults gbm_lrnr <- Lrnr_gbm$new() gbm_fit <- gbm_lrnr$train(cpp_task) gbm_preds <- gbm_fit$predict()
This learner provides fitting procedures for generalized linear models using
the stats package glm.fit
function.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
intercept = TRUE
: Should an intercept be included in the model?
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # simple, main-terms GLM lrnr_glm <- make_learner(Lrnr_glm) glm_fit <- lrnr_glm$train(task) glm_preds <- glm_fit$predict() # We can include interaction terms by 'piping' them into this learner. # Note that both main terms and the specified interactions will be included # in the regression model. interaction <- list(c("apgar1", "parity")) lrnr_interaction <- Lrnr_define_interactions$new(interactions = interaction) lrnr_glm_w_interaction <- make_learner(Pipeline, lrnr_interaction, lrnr_glm) fit <- lrnr_glm_w_interaction$train(task) coefs <- coef(fit$learner_fits$Lrnr_glm_TRUE)
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # simple, main-terms GLM lrnr_glm <- make_learner(Lrnr_glm) glm_fit <- lrnr_glm$train(task) glm_preds <- glm_fit$predict() # We can include interaction terms by 'piping' them into this learner. # Note that both main terms and the specified interactions will be included # in the regression model. interaction <- list(c("apgar1", "parity")) lrnr_interaction <- Lrnr_define_interactions$new(interactions = interaction) lrnr_glm_w_interaction <- make_learner(Pipeline, lrnr_interaction, lrnr_glm) fit <- lrnr_glm_w_interaction$train(task) coefs <- coef(fit$learner_fits$Lrnr_glm_TRUE)
This learner provides faster procedures for fitting linear and generalized
linear models than Lrnr_glm
with a minimal memory footprint.
This learner uses the internal fitting function provided by speedglm
package, speedglm.wfit
. See
Enea (2009) for more detail. The
glm.fit
function is used as a fallback, if
speedglm.wfit
fails.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
intercept = TRUE
: Should an intercept be included in the model?
method = "Cholesky"
: The method to check for singularity.
...
: Other parameters to be passed to
speedglm.wfit
.
Enea M (2009). “Fitting linear models and generalized linear models with large data sets in R.” Statistical Methods for the Analysis of Large Datasets: book of short papers, 411–414.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # simple, main-terms GLM lrnr_glm_fast <- Lrnr_glm_fast$new(method = "eigen") glm_fast_fit <- lrnr_glm_fast$train(task) glm_fast_preds <- glm_fast_fit$predict()
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # simple, main-terms GLM lrnr_glm_fast <- Lrnr_glm_fast$new(method = "eigen") glm_fast_fit <- lrnr_glm_fast$train(task) glm_fast_preds <- glm_fast_fit$predict()
This learner provides fitting procedures for semiparametric generalized
linear models using a specified baseline learner and
glm.fit
. Models of the form
linkfun(E[Y|A,W]) = linkfun(E[Y|A=0,W]) + A * f(W)
are supported,
where A
is a binary or continuous interaction variable, W
are
all of the covariates in the task excluding the interaction variable, and
f(W)
is a user-specified parametric function of the
non-interaction-variable covariates (e.g.,
f(W) = model.matrix(formula_sp, W)
). The baseline function
E[Y|A=0,W]
is fit using a user-specified learner, possibly pooled
over values of interaction variable A
, and then projected onto the
semiparametric model.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
formula_parametric = NULL
: A formula
object
specifying the parametric function of the non-interaction-variable
covariates.
lrnr_baseline
: A baseline learner for
estimation of the nonparametric component. This can be pooled or
unpooled by specifying return_matrix_predictions
.
interaction_variable = NULL
: An interaction variable name
present in the task's data that will be used to multiply by the
design matrix generated by formula_sp
. If NULL
(default)
then the interaction variable is treated identically 1
. When
this learner is used for estimation of the outcome regression in an
effect estimation procedure (e.g., when using sl3
within
package tmle3
), it is recommended that
interaction_variable
be set as the name of the treatment
variable.
family = NULL
: A family object whose link function specifies the
type of semiparametric model. For
partially-linear least-squares regression,
partially-linear logistic regression, and
partially-linear log-linear regression family
should be set to
guassian()
, binomial()
, and poisson()
,
respectively.
append_interaction_matrix = TRUE
: Whether lrnr_baseline
should be fit on cbind(task$X,A*V)
, where A
is the
interaction_variable
and V
is the design matrix obtained
from formula_sp
. Note that if TRUE
(default) the
resulting estimator will be projected onto the semiparametric model
using glm.fit
. If FALSE
and
interaction_variable
is binary, the semiparametric model is
learned by stratifying on interaction_variable
; Specifically,
lrnr_baseline
is used to estimate E[Y|A=0,W]
by
subsetting to only observations with A = 0
, i.e., subsetting to
only observations with interaction_variable = 0
, and where
W
are the other covariates in the task that are not the
interaction_variable
. In the binary interaction_variable
case, setting append_interaction_matrix = TRUE
allows one to
pool the learning across treatment arms and can enhance performance of
additive models.
return_matrix_predictions = FALSE
: Whether to return a matrix
output with three columns being E[Y|A=0,W]
, E[Y|A=1,W]
,
E[Y|A,W]
in the learner's fit_object
, where A
is
the interaction_variable
and W
are the other covariates
in the task that are not the interaction_variable
. Only used
if the interaction_variable
is binary.
...
: Any additional parameters that can be considered by
Lrnr_base
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: # simulate some data set.seed(459) n <- 200 W <- runif(n, -1, 1) A <- rbinom(n, 1, plogis(W)) Y_continuous <- rnorm(n, mean = A + W, sd = 0.3) Y_binary <- rbinom(n, 1, plogis(A + W)) Y_count <- rpois(n, exp(A + W)) data <- data.table::data.table(W, A, Y_continuous, Y_binary, Y_count) # Make tasks task_continuous <- sl3_Task$new( data, covariates = c("A", "W"), outcome = "Y_continuous" ) task_binary <- sl3_Task$new( data, covariates = c("A", "W"), outcome = "Y_binary" ) task_count <- sl3_Task$new( data, covariates = c("A", "W"), outcome = "Y_count", outcome_type = "continuous" ) formula_sp <- ~ 1 + W # fit partially-linear regression with append_interaction_matrix = TRUE set.seed(100) lrnr_glm_sp_gaussian <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = gaussian(), lrnr_baseline = Lrnr_glm$new(), interaction_variable = "A", append_interaction_matrix = TRUE ) lrnr_glm_sp_gaussian <- lrnr_glm_sp_gaussian$train(task_continuous) preds <- lrnr_glm_sp_gaussian$predict(task_continuous) beta <- lrnr_glm_sp_gaussian$fit_object$coefficients # in this case, since append_interaction_matrix = TRUE, it is equivalent to: V <- model.matrix(formula_sp, task_continuous$data) X <- cbind(task_continuous$data[["W"]], task_continuous$data[["A"]] * V) X0 <- cbind(task_continuous$data[["W"]], 0 * V) colnames(X) <- c("W", "A", "A*W") Y <- task_continuous$Y set.seed(100) beta_equiv <- coef(glm(X, Y, family = "gaussian"))[c(3, 4)] # actually, the glm fit is projected onto the semiparametric model # with glm.fit, no effect in this case print(beta - beta_equiv) # fit partially-linear regression w append_interaction_matrix = FALSE` set.seed(100) lrnr_glm_sp_gaussian <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = gaussian(), lrnr_baseline = Lrnr_glm$new(family = gaussian()), interaction_variable = "A", append_interaction_matrix = FALSE ) lrnr_glm_sp_gaussian <- lrnr_glm_sp_gaussian$train(task_continuous) preds <- lrnr_glm_sp_gaussian$predict(task_continuous) beta <- lrnr_glm_sp_gaussian$fit_object$coefficients # in this case, since append_interaction_matrix = FALSE, it is equivalent to # the following cntrls <- task_continuous$data[["A"]] == 0 # subset to control arm V <- model.matrix(formula_sp, task_continuous$data) X <- cbind(rep(1, n), task_continuous$data[["W"]]) Y <- task_continuous$Y set.seed(100) beta_Y0W <- lrnr_glm_sp_gaussian$fit_object$lrnr_baseline$fit_object$coefficients # subset to control arm beta_Y0W_equiv <- coef( glm.fit(X[cntrls, , drop = F], Y[cntrls], family = gaussian()) ) EY0 <- X %*% beta_Y0W beta_equiv <- coef(glm.fit(A * V, Y, offset = EY0, family = gaussian())) print(beta_Y0W - beta_Y0W_equiv) print(beta - beta_equiv) # fit partially-linear logistic regression lrnr_glm_sp_binomial <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = binomial(), lrnr_baseline = Lrnr_glm$new(), interaction_variable = "A", append_interaction_matrix = TRUE ) lrnr_glm_sp_binomial <- lrnr_glm_sp_binomial$train(task_binary) preds <- lrnr_glm_sp_binomial$predict(task_binary) beta <- lrnr_glm_sp_binomial$fit_object$coefficients # fit partially-linear log-link (relative-risk) regression # Lrnr_glm$new(family = "poisson") setting requires that lrnr_baseline # predicts nonnegative values. It is recommended to use poisson # regression-based learners. lrnr_glm_sp_poisson <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = poisson(), lrnr_baseline = Lrnr_glm$new(family = "poisson"), interaction_variable = "A", append_interaction_matrix = TRUE ) lrnr_glm_sp_poisson <- lrnr_glm_sp_poisson$train(task_count) preds <- lrnr_glm_sp_poisson$predict(task_count) beta <- lrnr_glm_sp_poisson$fit_object$coefficients ## End(Not run)
## Not run: # simulate some data set.seed(459) n <- 200 W <- runif(n, -1, 1) A <- rbinom(n, 1, plogis(W)) Y_continuous <- rnorm(n, mean = A + W, sd = 0.3) Y_binary <- rbinom(n, 1, plogis(A + W)) Y_count <- rpois(n, exp(A + W)) data <- data.table::data.table(W, A, Y_continuous, Y_binary, Y_count) # Make tasks task_continuous <- sl3_Task$new( data, covariates = c("A", "W"), outcome = "Y_continuous" ) task_binary <- sl3_Task$new( data, covariates = c("A", "W"), outcome = "Y_binary" ) task_count <- sl3_Task$new( data, covariates = c("A", "W"), outcome = "Y_count", outcome_type = "continuous" ) formula_sp <- ~ 1 + W # fit partially-linear regression with append_interaction_matrix = TRUE set.seed(100) lrnr_glm_sp_gaussian <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = gaussian(), lrnr_baseline = Lrnr_glm$new(), interaction_variable = "A", append_interaction_matrix = TRUE ) lrnr_glm_sp_gaussian <- lrnr_glm_sp_gaussian$train(task_continuous) preds <- lrnr_glm_sp_gaussian$predict(task_continuous) beta <- lrnr_glm_sp_gaussian$fit_object$coefficients # in this case, since append_interaction_matrix = TRUE, it is equivalent to: V <- model.matrix(formula_sp, task_continuous$data) X <- cbind(task_continuous$data[["W"]], task_continuous$data[["A"]] * V) X0 <- cbind(task_continuous$data[["W"]], 0 * V) colnames(X) <- c("W", "A", "A*W") Y <- task_continuous$Y set.seed(100) beta_equiv <- coef(glm(X, Y, family = "gaussian"))[c(3, 4)] # actually, the glm fit is projected onto the semiparametric model # with glm.fit, no effect in this case print(beta - beta_equiv) # fit partially-linear regression w append_interaction_matrix = FALSE` set.seed(100) lrnr_glm_sp_gaussian <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = gaussian(), lrnr_baseline = Lrnr_glm$new(family = gaussian()), interaction_variable = "A", append_interaction_matrix = FALSE ) lrnr_glm_sp_gaussian <- lrnr_glm_sp_gaussian$train(task_continuous) preds <- lrnr_glm_sp_gaussian$predict(task_continuous) beta <- lrnr_glm_sp_gaussian$fit_object$coefficients # in this case, since append_interaction_matrix = FALSE, it is equivalent to # the following cntrls <- task_continuous$data[["A"]] == 0 # subset to control arm V <- model.matrix(formula_sp, task_continuous$data) X <- cbind(rep(1, n), task_continuous$data[["W"]]) Y <- task_continuous$Y set.seed(100) beta_Y0W <- lrnr_glm_sp_gaussian$fit_object$lrnr_baseline$fit_object$coefficients # subset to control arm beta_Y0W_equiv <- coef( glm.fit(X[cntrls, , drop = F], Y[cntrls], family = gaussian()) ) EY0 <- X %*% beta_Y0W beta_equiv <- coef(glm.fit(A * V, Y, offset = EY0, family = gaussian())) print(beta_Y0W - beta_Y0W_equiv) print(beta - beta_equiv) # fit partially-linear logistic regression lrnr_glm_sp_binomial <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = binomial(), lrnr_baseline = Lrnr_glm$new(), interaction_variable = "A", append_interaction_matrix = TRUE ) lrnr_glm_sp_binomial <- lrnr_glm_sp_binomial$train(task_binary) preds <- lrnr_glm_sp_binomial$predict(task_binary) beta <- lrnr_glm_sp_binomial$fit_object$coefficients # fit partially-linear log-link (relative-risk) regression # Lrnr_glm$new(family = "poisson") setting requires that lrnr_baseline # predicts nonnegative values. It is recommended to use poisson # regression-based learners. lrnr_glm_sp_poisson <- Lrnr_glm_semiparametric$new( formula_sp = formula_sp, family = poisson(), lrnr_baseline = Lrnr_glm$new(family = "poisson"), interaction_variable = "A", append_interaction_matrix = TRUE ) lrnr_glm_sp_poisson <- lrnr_glm_sp_poisson$train(task_count) preds <- lrnr_glm_sp_poisson$predict(task_count) beta <- lrnr_glm_sp_poisson$fit_object$coefficients ## End(Not run)
This learner provides fitting procedures for elastic net models, including
both lasso (L1) and ridge (L2) penalized regression, using the glmnet
package. The function cv.glmnet
is used to select an
appropriate value of the regularization parameter lambda. For details on
these regularized regression models and glmnet, consider consulting
Friedman et al. (2010)).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
lambda = NULL
: An optional vector of lambda values to compare.
type.measure = "deviance"
: The loss to use when selecting
lambda. Options documented in cv.glmnet
.
nfolds = 10
: Number of k-fold/V-fold cross-validation folds for
cv.glmnet
to consider when selecting the optimal lambda
with cross-validation. Smallest nfolds
value allowed by glmnet
is 3. For further details, consult the documentation of
cv.glmnet
.
alpha = 1
: The elastic net parameter: alpha = 0
is Ridge
(L2-penalized) regression, while alpha = 1
specifies Lasso
(L1-penalized) regression. Values in the closed unit interval specify a
weighted combination of the two penalties. For further details, consult
the documentation of glmnet
.
nlambda = 100
: The number of lambda values to fit. Comparing
fewer values will speed up computation, but may hurt the statistical
performance. For further details, consult the documentation of
cv.glmnet
.
use_min = TRUE
: If TRUE
, the smallest value of the lambda
regularization parameter is used for prediction (i.e.,
lambda = cv_fit$lambda.min
); otherwise, a larger value is used
(i.e., lambda = cv_fit$lambda.1se
). The distinction between the
two variants is clarified in the documentation of
cv.glmnet
.
nfolds = 10
: Number of folds (default is 10). Smallest value
allowable by glmnet
is 3.
...
: Other parameters passed to cv.glmnet
and glmnet
, and additional arguments defined in
Lrnr_base
, such as params
like formula
.
Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear models via coordinate descent.” Journal of statistical software, 33(1), 1.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # simple prediction with lasso penalty lasso_lrnr <- Lrnr_glmnet$new() lasso_fit <- lasso_lrnr$train(mtcars_task) lasso_preds <- lasso_fit$predict() # simple prediction with ridge penalty ridge_lrnr <- Lrnr_glmnet$new(alpha = 0) ridge_fit <- ridge_lrnr$train(mtcars_task) ridge_preds <- ridge_fit$predict()
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # simple prediction with lasso penalty lasso_lrnr <- Lrnr_glmnet$new() lasso_fit <- lasso_lrnr$train(mtcars_task) lasso_preds <- lasso_fit$predict() # simple prediction with ridge penalty ridge_lrnr <- Lrnr_glmnet$new(alpha = 0) ridge_fit <- ridge_lrnr$train(mtcars_task) ridge_preds <- ridge_fit$predict()
This learner uses glmtree
from partykit to fit
recursive partitioning and regression trees in a generalized linear model.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
formula
: An optional object of class formula
(or one that
can be coerced to that class), which a symbolic description of the
generalized linear model to be fit. If not specified a main terms
regression model will be supplied, with each covariate included as
a term. Please consult glmtree
documentation
for more information on its use of formula
, and for a
description on formula
syntax consult the details of the
glm
documentation.
...
: Other parameters passed to
mob_control
or glmtree
that are not already specified in the sl3_Task
. See its
documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults glmtree_lrnr <- Lrnr_glmtree$new() glmtree_fit <- glmtree_lrnr$train(cpp_task) glmtree_preds <- glmtree_fit$predict()
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults glmtree_lrnr <- Lrnr_glmtree$new() glmtree_fit <- glmtree_lrnr$train(cpp_task) glmtree_preds <- glmtree_fit$predict()
This learner implements Generalized Random Forests, using the grf package. This is a pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods for least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables). Current implementation trains a regression forest that can be used to estimate quantiles of the conditional distribution of (Y|X=x).
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
num.trees = 2000
Number of trees grown in the forest. NOTE: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.
quantiles = c(0.1, 0.5, 0.9)
Vector of quantiles used to calibrate the forest.
regression.splitting = FALSE
Whether to use regression splits
when growing trees instead of specialized splits based on the quantiles
(the default). Setting this flag to TRUE
corresponds to the
approach to quantile forests from Meinshausen (2006).
clusters = NULL
Vector of integers or factors specifying which cluster each observation corresponds to.
equalize.cluster.weights = FALSE
If FALSE
, each unit
is given the same weight (so that bigger clusters get more weight). If
TRUE
, each cluster is given equal weight in the forest. In this
case, during training, each tree uses the same number of observations from
each drawn cluster: If the smallest cluster has K units, then when we
sample a cluster during training, we only give a random K elements of the
cluster to the tree-growing procedure. When estimating average treatment
effects, each observation is given weight 1/cluster size, so that the
total weight of each cluster is the same.
sample.fraction = 0.5
Fraction of the data used to build each
tree. NOTE: If honesty = TRUE
, these subsamples will further be cut
by a factor of honesty.fraction.
.
mtry = NULL
Number of variables tried for each split. By default, this is set based on the dimensionality of the predictors.
min.node.size = 5
A target for the minimum number of
observations in each tree leaf. Note that nodes with size smaller than
min.node.size
can occur, as in the randomForest package.
honesty = TRUE
Whether or not honest splitting (i.e., sub-sample splitting) should be used.
alpha = 0.05
A tuning parameter that controls the maximum imbalance of a split.
imbalance.penalty = 0
A tuning parameter that controls how harshly imbalanced splits are penalized.
num.threads = 1
Number of threads used in training. If set to
NULL
, the software automatically selects an appropriate amount.
quantiles_pred
Vector of quantiles used to predict. This can be different than the vector of quantiles used for training.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train grf learner and make predictions lrnr_grf <- Lrnr_grf$new(seed = 123) lrnr_grf_fit <- lrnr_grf$train(task) lrnr_grf_pred <- lrnr_grf_fit$predict()
# load example data data(cpp_imputed) # create sl3 task task <- sl3_Task$new( cpp_imputed, covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"), outcome = "haz" ) # train grf learner and make predictions lrnr_grf <- Lrnr_grf$new(seed = 123) lrnr_grf_fit <- lrnr_grf$train(task) lrnr_grf_pred <- lrnr_grf_fit$predict()
This learner implements the so-called "Causal Forests" estimator of the
conditional average treatment effect (CATE) using the grf package
function causal_forest
. This learner is intended for use
in the tmle3mopttx
package, where it is necessary to fit the CATE,
and then predict CATE values from new covariate data. As such, this learner
requires a treatment/exposure node to be specified (A
).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
A
: Column name in the sl3_Task
's covariates
that
indicates the treatment/exposure of interest. The treatment assignment
must be a binary or real numeric vector with no NAs.
...
: Other parameters passed to causal_forest
.
See its documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c("cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am"), outcome = "mpg" ) # simple prediction with lasso penalty grfcate_lrnr <- Lrnr_grfcate$new(A = "vs") grfcate_fit <- grfcate_lrnr$train(mtcars_task) grf_cate_predictions <- grfcate_fit$predict()
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c("cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am"), outcome = "mpg" ) # simple prediction with lasso penalty grfcate_lrnr <- Lrnr_grfcate$new(A = "vs") grfcate_fit <- grfcate_lrnr$train(mtcars_task) grf_cate_predictions <- grfcate_fit$predict()
This learner supports Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRU). This learner leverages the same principles as LSTM networks but is more streamlined and thus cheaper to run, at the expense of some loss in representational power. This learner uses the keras package. Note that all preprocessing, such as differencing and seasonal effects for time series, should be addressed before using this learner. Desired lags of the time series should be added as predictors before using the learner.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
batch_size
: How many times should the training data be used to
train the neural network?
units
: Positive integer, dimensionality of the output space.
dropout
: Float between 0 and 1. Fraction of the input units to
drop.
recurrent_dropout
: Float between 0 and 1. Fraction of the units
to drop for the linear transformation of the recurrent state.
activation
: Activation function to use. If you pass NULL, no
activation is applied (e.g., "linear" activation: a(x) = x
).
recurrent_activation
: Activation function to use for the
recurrent step.
recurrent_out
: Activation function to use for the output step.
epochs
: Number of epochs to train the model.
lr
: Learning rate.
layers
: How many LSTM layers. Only allows for 1 or 2.
callbacks
: List of callbacks, which is a set of functions to
be applied at given stages of the training procedure. Default callback
function callback_early_stopping
stops training if the validation
loss does not improve across patience
number of epochs.
...
: Other parameters passed to keras
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: library(origami) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation (simplifed example) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict (simplifed example) gru_lrnr <- Lrnr_gru_keras$new(batch_size = 1, epochs = 200) gru_fit <- gru_lrnr$train(train_task) gru_preds <- gru_fit$predict(valid_task) ## End(Not run)
## Not run: library(origami) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation (simplifed example) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict (simplifed example) gru_lrnr <- Lrnr_gru_keras$new(batch_size = 1, epochs = 200) gru_fit <- gru_lrnr$train(train_task) gru_preds <- gru_fit$predict(valid_task) ## End(Not run)
Lrnr_h2o_grid
- This learner provides facilities for fitting various
types of models with support for grid search over the hyperparameter space of
such models, using an interface to the H2O platform. For details on the
procedures available and any limitations, consult the documentation of the
h2o
package.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
algorithm
An h2o ML algorithm. For a list, please see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html#.
seed=1
RNG see to use when fitting.
distribution=NULL
Specifies the loss function for GBM, Deep Learning, and XGBoost.
intercept=TRUE
If TRUE
, and intercept term is
included.
standardize=TRUE
Standardize covariates to have mean = 0 and SD = 1.
lambda=0
Lasso Parameter.
max_iterations=100
Maximum number of iterations.
ignore_const_columns=FALSE
If TRUE
, drop constant
covariate columns
missing_values_handling="Skip"
How to handle missing values.
...
Other arguments passed to the h2o algorithm of choice. See https://docs.h2o.ai/h2o/latest-stable/h2o-docs/parameters.html for a list.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: library(h2o) suppressWarnings(h2o.init()) set.seed(1) # load example data data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" cpp_imputed <- cpp_imputed[1:150, ] # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) # h2o grid search hyperparameter alpha h2o_glm_grid <- Lrnr_h2o_grid$new( algorithm = "glm", hyper_params = list(alpha = c(0, 0.5)) ) h2o_glm_grid_fit <- h2o_glm_grid$train(task) pred <- h2o_glm_grid_fit$predict() ## End(Not run)
## Not run: library(h2o) suppressWarnings(h2o.init()) set.seed(1) # load example data data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" cpp_imputed <- cpp_imputed[1:150, ] # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) # h2o grid search hyperparameter alpha h2o_glm_grid <- Lrnr_h2o_grid$new( algorithm = "glm", hyper_params = list(alpha = c(0, 0.5)) ) h2o_glm_grid_fit <- h2o_glm_grid$train(task) pred <- h2o_glm_grid_fit$predict() ## End(Not run)
The Highly Adaptive Lasso (HAL) is a nonparametric regression function that
has been demonstrated to optimally estimate functions with bounded (finite)
variation norm. The algorithm proceeds by first building an adaptive basis
(i.e., the HAL basis) based on indicator basis functions (or higher-order
spline basis functions) representing covariates and interactions of the
covariates up to a pre-specified degree. The fitting procedures included in
this learner use fit_hal
from the hal9001
package. For details on HAL regression, consider consulting the following
Benkeser and van der Laan (2016)),
Coyle et al. (2020)),
Hejazi et al. (2020)).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
max_degree = 2
: An integer specifying the highest order of
interaction terms for which basis functions ought to be generated.
smoothness_orders = 1
: An integer specifying the smoothness of
the basis functions. See details of hal9001
package's
fit_hal
function for more information.
num_knots = 5
: An integer vector of length 1 or of length
max_degree
, specifying the maximum number of knot points
(i.e., bins) for each covariate. If num_knots
is a unit-length
vector, then the same num_knots
are used for each degree. See
details of hal9001
package's fit_hal
function for more information.
fit_control
: List of arguments, including those specified in
fit_hal
's fit_control
documentation, and
any additional arguments to be passed to cv.glmnet
or glmnet
. See the hal9001
package
fit_hal
function fdocumentation or more
information.
...
: Other parameters passed to fit_hal
and additional arguments defined in Lrnr_base
, such as
params
like formula
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # instantiate with max 2-way interactions, 0-order splines, and binning # (i.e., num_knots) that decreases with increasing interaction degree hal_lrnr <- Lrnr_hal9001$new(max_degree = 2, num_knots = c(5, 3)) hal_fit <- hal_lrnr$train(task) hal_preds <- hal_fit$predict()
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # instantiate with max 2-way interactions, 0-order splines, and binning # (i.e., num_knots) that decreases with increasing interaction degree hal_lrnr <- Lrnr_hal9001$new(max_degree = 2, num_knots = c(5, 3)) hal_fit <- hal_lrnr$train(task) hal_preds <- hal_fit$predict()
Conditional Density Estimation with the Highly Adaptive LASSO
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
grid_type = "equal_range"
: A character
indicating the
strategy to be used in creating bins along the observed support of
A
. For bins of equal range, use "equal_range"
; consult
the documentation of cut_interval
for further
information. To ensure each bin has the same number of observations,
use "equal_mass"
; consult the documentation of
cut_number
for details. The default is
"equal_range"
since this has been found to provide better
performance in simulation experiments; however, both types may be
specified (i.e., c("equal_range", "equal_mass")
) together, in
which case cross-validation will be used to select the optimal binning
strategy.
n_bins = c(3, 5)
: This numeric
value indicates the number
of bins into which the support of A
is to be divided. As with
grid_type
, multiple values may be specified, in which
cross-validation will be used to select the optimal number of bins.
lambda_seq = exp(seq(-1, -13, length = 1000L))
: A numeric
sequence of regularization parameter values of Lasso regression, which
are passed to fit_hal
via its argument
lambda
, itself passed to glmnet
.
trim_dens = 1/sqrt(n)
: A numeric
giving the minimum
allowed value of the resultant density predictions. Any predicted
density values below this tolerance threshold are set to the indicated
minimum. The default is to use the inverse of the square root of the
sample size of the prediction set, i.e., 1/sqrt(n); another notable
choice is 1/sqrt(n)/log(n). If there are observations in the
prediction set with values of new_A
outside of the support of
the training set, their predictions are similarly truncated.
...
: Other arguments to be passed directly to
haldensify
. See its documentation for
details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: library(dplyr) data(cpp_imputed) covars <- c("parity", "sexn") outcome <- "haz" # create task task <- cpp_imputed %>% slice(seq(1, nrow(.), by = 3)) %>% filter(agedays == 1) %>% sl3_Task$new( covariates = covars, outcome = outcome ) # instantiate the learner hal_dens <- Lrnr_haldensify$new( grid_type = "equal_range", n_bins = c(3, 5), lambda_seq = exp(seq(-1, -13, length = 100)) ) # fit and predict densities hal_dens_fit <- hal_dens$train(task) hal_dens_preds <- hal_dens_fit$predict() ## End(Not run)
## Not run: library(dplyr) data(cpp_imputed) covars <- c("parity", "sexn") outcome <- "haz" # create task task <- cpp_imputed %>% slice(seq(1, nrow(.), by = 3)) %>% filter(agedays == 1) %>% sl3_Task$new( covariates = covars, outcome = outcome ) # instantiate the learner hal_dens <- Lrnr_haldensify$new( grid_type = "equal_range", n_bins = c(3, 5), lambda_seq = exp(seq(-1, -13, length = 100)) ) # fit and predict densities hal_dens_fit <- hal_dens$train(task) hal_dens_preds <- hal_dens_fit$predict() ## End(Not run)
This learner fits first harmonics in a Fourier expansion to one
or more time series. Fourier decomposition relies on
fourier
, and the time series is fit using
tslm
. For further details on working with harmonic
regression for time-series with package forecast, consider consulting
Hyndman et al. (2021)) and
Hyndman and Khandakar (2008)).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
K
: Maximum order of the fourier terms. Passed to
fourier
.
freq
: The frequency of the time series.
...
: Other parameters passed to fourier
.
Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O'Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2021).
forecast: Forecasting functions for time series and linear models.
R package version 8.14, https://pkg.robjhyndman.com/forecast/.
Hyndman RJ, Khandakar Y (2008).
“Automatic time series forecasting: the forecast package for R.”
Journal of Statistical Software, 26(3), 1–22.
https://www.jstatsoft.org/article/view/v027i03.
Other Learners:
Custom_chain
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(origami) library(data.table) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105) HarReg_fit <- HarReg_learner$train(train_task) HarReg_preds <- HarReg_fit$predict(valid_task)
library(origami) library(data.table) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105) HarReg_fit <- HarReg_learner$train(train_task) HarReg_preds <- HarReg_fit$predict(valid_task)
This learner provides converts a binomial learner into a multinomial learner using a series of independent binomials. The procedure is modeled on https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_set_of_independent_binary_regressions
R6Class
object.
Lrnr_base
object with methods for training and
prediction
binomial_learner
The learner to wrap.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(dplyr) # load example data data(cpp) cpp <- cpp %>% select(c(bmi, agedays, feeding)) %>% mutate(feeding = as.factor(feeding)) %>% na.omit() # create sl3 task task <- make_sl3_Task(cpp, covariates = c("agedays", "bmi"), outcome = "feeding" ) # train independent binomial learner and make predictions lrnr_indbinomial <- make_learner(Lrnr_independent_binomial) fit <- lrnr_indbinomial$train(task) preds <- fit$predict(task)
library(dplyr) # load example data data(cpp) cpp <- cpp %>% select(c(bmi, agedays, feeding)) %>% mutate(feeding = as.factor(feeding)) %>% na.omit() # create sl3 task task <- make_sl3_Task(cpp, covariates = c("agedays", "bmi"), outcome = "feeding" ) # train independent binomial learner and make predictions lrnr_indbinomial <- make_learner(Lrnr_independent_binomial) fit <- lrnr_indbinomial$train(task) preds <- fit$predict(task)
This learner provides fitting procedures for lightgbm
models, using
the lightgbm package, via lgb.train
. These
gradient boosted decision tree models feature faster training speed and
efficiency, lower memory usage than competing frameworks (e.g., from the
xgboost package), better prediction accuracy, and improved handling of
large-scale data. For details on the fitting procedure and its tuning
parameters, consult the documentation of the lightgbm package. The
LightGBM framework was introduced in Ke et al. (2017)).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
num_threads = 1L
: Number of threads for hyperthreading.
...
: Other arguments passed to lgb.train
.
See its documentation for further details.
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T (2017). “LightGBM: A Highly Efficient Gradient Boosting Decision Tree.” In Advances in Neural Information Processing Systems, volume 30, 3146–3154.
Lrnr_gbm for standard gradient boosting models (via the gbm package) and Lrnr_xgboost for the extreme gradient boosted tree models from the Xgboost framework (via the xgboost package).
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: # currently disabled since LightGBM crashes R on Windows # more info at https://github.com/tlverse/sl3/issues/344 data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults lgb_lrnr <- Lrnr_lightgbm$new() lgb_fit <- lgb_lrnr$train(cpp_task) lgb_preds <- lgb_fit$predict() # get feature importance from fitted model lgb_varimp <- lgb_fit$importance() ## End(Not run)
## Not run: # currently disabled since LightGBM crashes R on Windows # more info at https://github.com/tlverse/sl3/issues/344 data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults lgb_lrnr <- Lrnr_lightgbm$new() lgb_fit <- lgb_lrnr$train(cpp_task) lgb_preds <- lgb_fit$predict() # get feature importance from fitted model lgb_varimp <- lgb_fit$importance() ## End(Not run)
This learner supports long short-term memory (LSTM) recurrent neural network
algorithm. This learner uses the keras
package. Note that all
preprocessing, such as differencing and seasonal effects for time series
should be addressed before using this learner. Desired lags of the time series
should be added as predictors before using the learner.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
batch_size
: How many times should the training data be used to
train the neural network?
units
: Positive integer, dimensionality of the output space.
dropout
: Float between 0 and 1. Fraction of the input units to
drop.
recurrent_dropout
: Float between 0 and 1. Fraction of the units
to drop for the linear transformation of the recurrent state.
activation
: Activation function to use. If you pass NULL, no
activation is applied (e.g., "linear" activation: a(x) = x
).
recurrent_activation
: Activation function to use for the
recurrent step.
recurrent_out
: Activation function to use for the output step.
epochs
: Number of epochs to train the model.
lr
: Learning rate.
layers
: How many LSTM layers. Only allows for 1 or 2.
callbacks
: List of callbacks, which is a set of functions to
be applied at given stages of the training procedure. Default callback
function callback_early_stopping
stops training if the validation
loss does not improve across patience
number of epochs.
...
: Other parameters passed to keras
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: library(origami) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation (simplifed example) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict (simplifed example) lstm_lrnr <- Lrnr_lstm_keras$new(batch_size = 1, epochs = 200) lstm_fit <- lstm_lrnr$train(train_task) lstm_preds <- lstm_fit$predict(valid_task) ## End(Not run)
## Not run: library(origami) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation (simplifed example) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict (simplifed example) lstm_lrnr <- Lrnr_lstm_keras$new(batch_size = 1, epochs = 200) lstm_fit <- lstm_lrnr$train(train_task) lstm_preds <- lstm_fit$predict(valid_task) ## End(Not run)
This learner provides fitting procedures for intercept models. Such models predict the outcome variable simply as the mean of the outcome vector.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
...
: Not used.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # simple, main-terms GLM lrnr_mean <- make_learner(Lrnr_mean) mean_fit <- lrnr_mean$train(task) mean_preds <- mean_fit$predict()
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # simple, main-terms GLM lrnr_mean <- make_learner(Lrnr_mean) mean_fit <- lrnr_mean$train(task) mean_preds <- mean_fit$predict()
Stratify univariable time-series learners by time-series
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner="learner"
An initialized Lrnr_* object.
variable_stratify="variable_stratify"
A character
giving the variable in the covariates on which to stratify. Supports only
variables with discrete levels coded as numeric
.
...
Other parameters passed directly to
learner$train
. See its documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(origami) library(dplyr) set.seed(123) # Simulate simple AR(2) process data <- matrix(arima.sim(model = list(ar = c(0.9, -0.2)), n = 200)) id <- c(rep("Series_1", 50), rep("Series_2", 50), rep("Series_3", 50), rep("Series_4", 50)) data <- data.frame(data) data$id <- as.factor(id) data <- data %>% group_by(id) %>% dplyr::mutate(time = 1:n()) data$W1 <- rbinom(200, 1, 0.6) data$W2 <- rbinom(200, 1, 0.2) folds <- origami::make_folds(data, t = max(data$time), id = data$id, time = data$time, fold_fun = folds_rolling_window_pooled, window_size = 20, validation_size = 15, gap = 0, batch = 10 ) task <- sl3_Task$new( data = data, outcome = "data", time = "time", id = "id", covariates = c("W1", "W2"), folds = folds ) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) lrnr_arima <- Lrnr_arima$new() multiple_ts_arima <- Lrnr_multiple_ts$new(learner = lrnr_arima) multiple_ts_arima_fit <- multiple_ts_arima$train(train_task) multiple_ts_arima_preds <- multiple_ts_arima_fit$predict(valid_task)
library(origami) library(dplyr) set.seed(123) # Simulate simple AR(2) process data <- matrix(arima.sim(model = list(ar = c(0.9, -0.2)), n = 200)) id <- c(rep("Series_1", 50), rep("Series_2", 50), rep("Series_3", 50), rep("Series_4", 50)) data <- data.frame(data) data$id <- as.factor(id) data <- data %>% group_by(id) %>% dplyr::mutate(time = 1:n()) data$W1 <- rbinom(200, 1, 0.6) data$W2 <- rbinom(200, 1, 0.2) folds <- origami::make_folds(data, t = max(data$time), id = data$id, time = data$time, fold_fun = folds_rolling_window_pooled, window_size = 20, validation_size = 15, gap = 0, batch = 10 ) task <- sl3_Task$new( data = data, outcome = "data", time = "time", id = "id", covariates = c("W1", "W2"), folds = folds ) train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) lrnr_arima <- Lrnr_arima$new() multiple_ts_arima <- Lrnr_multiple_ts$new(learner = lrnr_arima) multiple_ts_arima_fit <- multiple_ts_arima$train(train_task) multiple_ts_arima_preds <- multiple_ts_arima_fit$predict(valid_task)
This learner applies a univariate outcome learner across a vector of outcome variables, effectively transforming it into a multivariate outcome learner
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner
The learner to wrap.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table) # simulate data set.seed(123) n <- 1000 p <- 5 pY <- 3 W <- matrix(rnorm(n * p), nrow = n) colnames(W) <- sprintf("W%d", seq_len(p)) Y <- matrix(rnorm(n * pY, 0, 0.2) + W[, 1], nrow = n) colnames(Y) <- sprintf("Y%d", seq_len(pY)) data <- data.table(W, Y) covariates <- grep("W", names(data), value = TRUE) outcomes <- grep("Y", names(data), value = TRUE) # make sl3 task task <- sl3_Task$new(data.table::copy(data), covariates = covariates, outcome = outcomes ) # train multivariate learner and make predictions mv_learner <- make_learner(Lrnr_multivariate, make_learner(Lrnr_glm_fast)) mv_fit <- mv_learner$train(task) mv_pred <- mv_fit$predict(task) mv_pred <- unpack_predictions(mv_pred)
library(data.table) # simulate data set.seed(123) n <- 1000 p <- 5 pY <- 3 W <- matrix(rnorm(n * p), nrow = n) colnames(W) <- sprintf("W%d", seq_len(p)) Y <- matrix(rnorm(n * pY, 0, 0.2) + W[, 1], nrow = n) colnames(Y) <- sprintf("Y%d", seq_len(pY)) data <- data.table(W, Y) covariates <- grep("W", names(data), value = TRUE) outcomes <- grep("Y", names(data), value = TRUE) # make sl3 task task <- sl3_Task$new(data.table::copy(data), covariates = covariates, outcome = outcomes ) # train multivariate learner and make predictions mv_learner <- make_learner(Lrnr_multivariate, make_learner(Lrnr_glm_fast)) mv_fit <- mv_learner$train(task) mv_pred <- mv_fit$predict(task) mv_pred <- unpack_predictions(mv_pred)
This learner provides feed-forward neural networks with a single hidden layer, and for multinomial log-linear models.
R6Class
object.
Learner object with methods for both training and prediction. See
Lrnr_base
for documentation on learners.
formula
A formula of the form class ~ x1 + x2 + ...
weights
(case) weights for each example – if missing defaults to 1
size
number of units in the hidden layer. Can be zero if there are skip-layer units.
entropy
switch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.
decay
parameter for weight decay. Default 0.
maxit
maximum number of iterations. Default 100.
linout
switch for linear output units. Default logistic output units.
...
Other parameters passed to
nnet
.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
set.seed(123) # load example data data(cpp_imputed) covars <- c("bmi", "parity", "mage", "sexn") outcome <- "haz" # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) # train neural networks and make predictions lrnr_nnet <- Lrnr_nnet$new(linout = TRUE, size = 10, maxit = 1000) fit <- lrnr_nnet$train(task) preds <- fit$predict(task)
set.seed(123) # load example data data(cpp_imputed) covars <- c("bmi", "parity", "mage", "sexn") outcome <- "haz" # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) # train neural networks and make predictions lrnr_nnet <- Lrnr_nnet$new(linout = TRUE, size = 10, maxit = 1000) fit <- lrnr_nnet$train(task) preds <- fit$predict(task)
This learner provides fitting procedures for models via non-negative linear
least squares regression, using nnls package's
nnls
function.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
convex = FALSE
: Normalize the coefficients to be a convex
combination.
...
: Other parameters passed to nnls
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") lrnr_nnls <- make_learner(Lrnr_nnls) nnls_fit <- lrnr_nnls$train(task) nnls_preds <- nnls_fit$predict() # NNLS is commonly used as a metalearner in a super learner (i.e., Lrnr_sl) lrnr_glm <- make_learner(Lrnr_glm) lrnr_glmnet <- Lrnr_glmnet$new() lrnr_mean <- Lrnr_mean$new() learners <- c(lrnr_glm, lrnr_glmnet, lrnr_mean) names(learners) <- c("glm", "lasso", "mean") # optional, renaming learners simple_learner_stack <- make_learner(Stack, learners) sl <- Lrnr_sl$new(learners = simple_learner_stack, metalearner = lrnr_nnls) sl_fit <- sl$train(task) sl_preds <- sl_fit$predict()
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") lrnr_nnls <- make_learner(Lrnr_nnls) nnls_fit <- lrnr_nnls$train(task) nnls_preds <- nnls_fit$predict() # NNLS is commonly used as a metalearner in a super learner (i.e., Lrnr_sl) lrnr_glm <- make_learner(Lrnr_glm) lrnr_glmnet <- Lrnr_glmnet$new() lrnr_mean <- Lrnr_mean$new() learners <- c(lrnr_glm, lrnr_glmnet, lrnr_mean) names(learners) <- c("glm", "lasso", "mean") # optional, renaming learners simple_learner_stack <- make_learner(Stack, learners) sl <- Lrnr_sl$new(learners = simple_learner_stack, metalearner = lrnr_nnls) sl_fit <- sl$train(task) sl_preds <- sl_fit$predict()
This meta-learner provides fitting procedures for any pairing of loss
function and metalearner function, subject to constraints. The
optimization problem is solved by making use of optim
, For further
details, consult the documentation of optim
.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner_function=metalearner_linear
A function(alpha, X) that takes a vector of covariates and a matrix of data and combines them into a vector of predictions. See metalearners for options.
loss_function=loss_squared_error
A function(pred, truth) that takes prediction and truth vectors and returns a loss vector. See loss_functions for options.
intercept=FALSE
If true, X includes an intercept term.
init_0=FALSE
If true, alpha is initialized to all 0's, useful for TMLE. Otherwise, it is initialized to equal weights summing to 1, useful for Super Learner.
...
Not currently used.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
This learner provides facilities for performing principal components analysis
(PCA) to reduce the dimensionality of a data set to a pre-specified value.
For further details, consult the documentation of prcomp
from the core
package stats
. This learner object is primarily intended for use with
other learners as part of a pre-processing pipeline.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
n_comp
A numeric
value indicating the number of
components to be produced as a result of the PCA dimensionality
reduction. For convenience, this defaults to two (2) components.
center
A logical
value indicating whether the input
data matrix should be centered before performing PCA. This defaults to
TRUE
since that is the recommended practice. Consider consulting
the documentation of prcomp
for details.
scale.
A logical
value indicating whether the input
data matrix should be scaled (to unit variance) before performing PCA.
Consider consulting the documentation of prcomp
for details.
...
Other optional parameters to be passed to prcomp
.
Consider consulting the documentation of prcomp
for details.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
set.seed(37912) # load example data ncomp <- 3 data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) # define learners glm_fast <- Lrnr_glm_fast$new(intercept = FALSE) pca_sl3 <- Lrnr_pca$new(n_comp = ncomp, center = TRUE, scale. = TRUE) pcr_pipe_sl3 <- Pipeline$new(pca_sl3, glm_fast) # create stacks + train and predict pcr_pipe_sl3_fit <- pcr_pipe_sl3$train(task) pcr_pred <- pcr_pipe_sl3_fit$predict()
set.seed(37912) # load example data ncomp <- 3 data(cpp_imputed) covars <- c( "apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome) # define learners glm_fast <- Lrnr_glm_fast$new(intercept = FALSE) pca_sl3 <- Lrnr_pca$new(n_comp = ncomp, center = TRUE, scale. = TRUE) pcr_pipe_sl3 <- Pipeline$new(pca_sl3, glm_fast) # create stacks + train and predict pcr_pipe_sl3_fit <- pcr_pipe_sl3$train(task) pcr_pred <- pcr_pipe_sl3_fit$predict()
These learners provide an interface to the wrapper functions,
screening algorithms, and combination methods provided by the
SuperLearner
package. These components add support for a range of
algorithms not currently implemented natively in sl3
.
Lrnr_pkg_SuperLearner
- Interface for SuperLearner
wrapper functions. Use SuperLearner::listWrappers("SL")
for a list.
Use SuperLearner::listWrappers("method")
for a list of options.
Use SuperLearner::listWrappers("screen")
for a list of options.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
SL_wrapper
The wrapper function to use.
...
Currently not used.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
This learner provides fitting procedures for an adaptive regression procedure
using piecewise linear splines to model the response, using the the
polspline package' functions polymars
(for
continuous outcome prediction) or polyclass
(for
binary or categorical outcome prediction).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
...
: Other parameters passed to
polymars
, polyclass
,
or additional arguments defined in Lrnr_base
(such as
params
like formula
). See their documentation for
details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") polspline_lrnr <- Lrnr_caret$new(method = "rf") set.seed(693) polspline_lrnr_fit <- polspline_lrnr$train(task) polspline_lrnr_predictions <- polspline_lrnr_fit$predict() ## End(Not run)
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") polspline_lrnr <- Lrnr_caret$new(method = "rf") set.seed(693) polspline_lrnr_fit <- polspline_lrnr$train(task) polspline_lrnr_predictions <- polspline_lrnr_fit$predict() ## End(Not run)
This learner provides converts a binomial learner into a multinomial learner using a pooled hazards model.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
binomial_learner
The learner to wrap.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table) set.seed(74294) n <- 500 x <- rnorm(n) epsilon <- rnorm(n) y <- 3 * x + epsilon data <- data.table(x = x, y = y) task <- sl3_Task$new(data, covariates = c("x"), outcome = "y") # instantiate learners hal <- Lrnr_hal9001$new( lambda = exp(seq(-1, -13, length = 100)), max_degree = 6, smoothness_orders = 0 ) hazard_learner <- Lrnr_pooled_hazards$new(hal) density_learner <- Lrnr_density_discretize$new( hazard_learner, type = "equal_range", n_bins = 5 ) # fit discrete density model to pooled hazards data set.seed(74294) fit_density <- density_learner$train(task) pred_density <- fit_density$predict()
library(data.table) set.seed(74294) n <- 500 x <- rnorm(n) epsilon <- rnorm(n) y <- 3 * x + epsilon data <- data.table(x = x, y = y) task <- sl3_Task$new(data, covariates = c("x"), outcome = "y") # instantiate learners hal <- Lrnr_hal9001$new( lambda = exp(seq(-1, -13, length = 100)), max_degree = 6, smoothness_orders = 0 ) hazard_learner <- Lrnr_pooled_hazards$new(hal) density_learner <- Lrnr_density_discretize$new( hazard_learner, type = "equal_range", n_bins = 5 ) # fit discrete density model to pooled hazards data set.seed(74294) fit_density <- density_learner$train(task) pred_density <- fit_density$predict()
This learner provides fitting procedures for random forest models, using the
randomForest
package, using randomForest
function.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
ntree = 500
: Number of trees to grow. This should not be set
to too small a number, to ensure that every input row gets predicted
at least a few times.
keep.forest = TRUE
: If TRUE
, forest is stored, which is
required for prediction.
nodesize = 5
: Minimum number of observations in a terminal node.
...
: Other parameters passed to randomForest
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults rf_lrnr <- Lrnr_randomForest$new() rf_fit <- rf_lrnr$train(cpp_task) rf_preds <- rf_fit$predict()
data(cpp_imputed) # create task for prediction cpp_task <- sl3_Task$new( data = cpp_imputed, covariates = c("bmi", "parity", "mage", "sexn"), outcome = "haz" ) # initialization, training, and prediction with the defaults rf_lrnr <- Lrnr_randomForest$new() rf_fit <- rf_lrnr$train(cpp_task) rf_preds <- rf_fit$predict()
This learner provides fitting procedures for a faster implementation of
Random Forests, using the routines from ranger (described
in Wright and Ziegler (2017)) through a call to the function
ranger
. Variable importance functionality is also
provided through invocation of the importance
method.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
num.trees = 500
: Number of trees to be used in growing the forest.
write.forest = TRUE
: If TRUE
, forest is stored, which is
required for prediction. Set to FALSE
to reduce memory usage if
downstream prediction is not intended.
importance = "none"
: Variable importance mode, one of "none",
"impurity", "impurity_corrected", "permutation". The "impurity" measure
is the Gini index for classification, the variance of the responses for
regression, and the sum of test statistics (for survival analysis, see
the splitrule
argument of ranger
).
num.threads = 1
: Number of threads.
...
: Other parameters passed to ranger
. See
its documentation for details.
Wright MN, Ziegler A (2017). “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01.
Lrnr_randomForest for a similar learner using randomForest
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars) # create task for prediction mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # initialization, training, and prediction with the defaults ranger_lrnr <- Lrnr_ranger$new() ranger_fit <- ranger_lrnr$train(mtcars_task) ranger_preds <- ranger_fit$predict() # variable importance ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected") ranger_fit_importance <- ranger_lrnr_importance$train(mtcars_task) ranger_importance <- ranger_fit_importance$importance() # screening based on variable importance, example in glm pipeline ranger_importance_screener <- Lrnr_screener_importance$new( learner = ranger_lrnr_importance, num_screen = 3 ) glm_lrnr <- make_learner(Lrnr_glm) ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr) ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task)
data(mtcars) # create task for prediction mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # initialization, training, and prediction with the defaults ranger_lrnr <- Lrnr_ranger$new() ranger_fit <- ranger_lrnr$train(mtcars_task) ranger_preds <- ranger_fit$predict() # variable importance ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected") ranger_fit_importance <- ranger_lrnr_importance$train(mtcars_task) ranger_importance <- ranger_fit_importance$importance() # screening based on variable importance, example in glm pipeline ranger_importance_screener <- Lrnr_screener_importance$new( learner = ranger_lrnr_importance, num_screen = 3 ) glm_lrnr <- make_learner(Lrnr_glm) ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr) ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task)
A wrapper around a revere generator that produces a revere task on chain
R6Class
object.
Lrnr_base
object with methods for training and
prediction
revere_function
The revere generator function to wrap
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
This learner uses rpart
from the rpart package to
fit recursive partitioning and regression trees.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
factor_binary_outcome = TRUE
: Logical indicating whether a binary
outcome should be defined as a factor instead of a numeric. This
only needs to be modified to FALSE
when the user has a binary
outcome and they would like to use the mean squared error (MSE) as the
splitting metric.
...
: Other parameters to be passed directly to
rpart
(see its documentation for details), and
additional arguments defined in Lrnr_base
, such as
formula
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") rpart_lrnr <- Lrnr_rpart$new() set.seed(693) rpart_fit <- rpart_lrnr$train(task)
data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") rpart_lrnr <- Lrnr_rpart$new() set.seed(693) rpart_fit <- rpart_lrnr$train(task)
This learner supports autoregressive fractionally integrated
moving average and various flavors of generalized autoregressive
conditional heteroskedasticity models for univariate time-series. All the
models are fit using ugarchfit
.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
variance.model
: List containing variance model specification.
This includes model, GARCH order, submodel, external regressors and
variance tageting. Refer to ugarchspec
for more
information.
mean.model
: List containing the mean model specification. This
includes ARMA model, whether the mean should be included, and external
regressors among others.
distribution.model
: Conditional density to be used for the
innovations.
start.pars
:List of staring parameters for the optimization
routine.
fixed.pars
:List of parameters which are to be kept fixed during
the optimization routine.
...
: Other parameters passed to ugarchfit
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(origami) library(data.table) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105) HarReg_fit <- HarReg_learner$train(train_task) HarReg_preds <- HarReg_fit$predict(valid_task)
library(origami) library(data.table) data(bsds) # make folds appropriate for time-series cross-validation folds <- make_folds(bsds, fold_fun = folds_rolling_window, window_size = 500, validation_size = 100, gap = 0, batch = 50 ) # build task by passing in external folds structure task <- sl3_Task$new( data = bsds, folds = folds, covariates = c( "weekday", "temp" ), outcome = "cnt" ) # create tasks for taining and validation train_task <- training(task, fold = task$folds[[1]]) valid_task <- validation(task, fold = task$folds[[1]]) # instantiate learner, then fit and predict HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105) HarReg_fit <- HarReg_learner$train(train_task) HarReg_preds <- HarReg_fit$predict(valid_task)
This learner augments a set of screened covariates with covariates that should be included by default, even if the screener did not select them.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
screener
An instantiated screener.
default_covariates
Vector of covariate names to be automatically added to the vector selected by the screener, regardless of whether or not these covariates were selected by the screener.
...
Other parameters passed to screener
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table) # load example data data(cpp_imputed) setDT(cpp_imputed) cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))] covars <- c( "apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome ) screener_cor <- make_learner( Lrnr_screener_correlation, type = "rank", num_screen = 2 ) screener_augment <- Lrnr_screener_augment$new(screener_cor, covars) screener_fit <- screener_augment$train(task) selected <- screener_fit$fit_object$selected screener_selected <- screener_fit$fit_object$screener_selected
library(data.table) # load example data data(cpp_imputed) setDT(cpp_imputed) cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))] covars <- c( "apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome ) screener_cor <- make_learner( Lrnr_screener_correlation, type = "rank", num_screen = 2 ) screener_augment <- Lrnr_screener_augment$new(screener_cor, covars) screener_fit <- screener_augment$train(task) selected <- screener_fit$fit_object$selected screener_selected <- screener_fit$fit_object$screener_selected
This learner provides screening of covariates based on the magnitude of their estimated coefficients in a (possibly regularized) GLM.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner
An instantiated learner to use for estimating coefficients used in screening.
threshold = 1e-3
Minimum size of coefficients to be kept.
max_screen = NULL
Maximum number of covariates to be kept.
min_screen = 2
Maximum number of covariates to be kept. Only
applicable when supplied learner
is a Lrnr_glmnet
.
...
Other parameters passed to learner
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table) # load example data data(cpp_imputed) setDT(cpp_imputed) cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))] covars <- c( "apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome ) lrnr_glmnet <- make_learner(Lrnr_glmnet) lrnr_glm <- make_learner(Lrnr_glm) lrnr_mean <- make_learner(Lrnr_mean) lrnrs <- make_learner(Stack, lrnr_glm, lrnr_mean) glm_screener <- make_learner(Lrnr_screener_coefs, lrnr_glm, max_screen = 2) glm_screener_pipeline <- make_learner(Pipeline, glm_screener, lrnrs) fit_glm_screener_pipeline <- glm_screener_pipeline$train(task) preds_glm_screener_pipeline <- fit_glm_screener_pipeline$predict()
library(data.table) # load example data data(cpp_imputed) setDT(cpp_imputed) cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))] covars <- c( "apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome ) lrnr_glmnet <- make_learner(Lrnr_glmnet) lrnr_glm <- make_learner(Lrnr_glm) lrnr_mean <- make_learner(Lrnr_mean) lrnrs <- make_learner(Stack, lrnr_glm, lrnr_mean) glm_screener <- make_learner(Lrnr_screener_coefs, lrnr_glm, max_screen = 2) glm_screener_pipeline <- make_learner(Pipeline, glm_screener, lrnrs) fit_glm_screener_pipeline <- glm_screener_pipeline$train(task) preds_glm_screener_pipeline <- fit_glm_screener_pipeline$predict()
This learner provides covariate screening procedures by running a test of
correlation (Pearson default) with the cor.test
function, and then selecting the (1) top ranked variables (default), or (2)
the variables with a pvalue lower than some pre-specified threshold.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
method = 'pearson'
Correlation coefficient used for test.
type = c('rank', 'threshold')
Screen covariates by (1) rank
(default), which chooses the top num_screen
correlated covariates;
or (2) threshold, which chooses covariates with a correlation- test- based
pvalue lower the threshold and a minimum of min_screen
covariates.
num_screen = 5
Number of covariates to select.
pvalue_threshold = 0.1
Maximum p-value threshold. Covariates
with a pvalue lower than this threshold will be retained, and at least
min_screen
most significant covariates will be selected.
min_screen = 2
Minimum number of covariates to select. Used in pvalue_threshold screening procedure.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table) # load example data data(cpp_imputed) setDT(cpp_imputed) cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))] covars <- c( "apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome ) lrnr_glmnet <- make_learner(Lrnr_glmnet) lrnr_glm <- make_learner(Lrnr_glm) lrnr_mean <- make_learner(Lrnr_mean) lrnrs <- make_learner(Stack, lrnr_glm, lrnr_mean) screen_corP <- make_learner(Lrnr_screener_correlation, type = "threshold") corP_pipeline <- make_learner(Pipeline, screen_corP, lrnrs) fit_corP <- corP_pipeline$train(task) preds_corP_screener <- fit_corP$predict()
library(data.table) # load example data data(cpp_imputed) setDT(cpp_imputed) cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))] covars <- c( "apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs", "sexn" ) outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome ) lrnr_glmnet <- make_learner(Lrnr_glmnet) lrnr_glm <- make_learner(Lrnr_glm) lrnr_mean <- make_learner(Lrnr_mean) lrnrs <- make_learner(Stack, lrnr_glm, lrnr_mean) screen_corP <- make_learner(Lrnr_screener_correlation, type = "threshold") corP_pipeline <- make_learner(Pipeline, screen_corP, lrnrs) fit_corP <- corP_pipeline$train(task) preds_corP_screener <- fit_corP$predict()
This learner screens covariates based on their variable importance, where the
importance values are obtained from the learner
. Any learner with an
importance
method can be used. The set of learners with support for
importance
can be found with sl3_list_learners("importance")
.
Like all other screeners, this learner is intended for use in a
Pipeline
, so the output from this learner (i.e., the selected
covariates) can be used as input for the next learner in the pipeline.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
learner
: An instantiated learner that supports variable importance.
The set of learners with this support can be obtained via
sl3_list_learners("importance")
.
num_screen = 5
: The top n number of "most impotant" variables to
retain.
...
: Other parameters passed to the learner
's
importance
function.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) glm_lrnr <- make_learner(Lrnr_glm) # screening based on \code{\link{Lrnr_ranger}} variable importance ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected") ranger_importance_screener <- Lrnr_screener_importance$new( learner = ranger_lrnr_importance, num_screen = 3 ) ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr) ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task) # screening based on \code{\link{Lrnr_randomForest}} variable importance rf_lrnr <- Lrnr_randomForest$new() rf_importance_screener <- Lrnr_screener_importance$new( learner = rf_lrnr, num_screen = 3 ) rf_screen_glm_pipe <- Pipeline$new(rf_importance_screener, glm_lrnr) rf_screen_glm_pipe_fit <- rf_screen_glm_pipe$train(mtcars_task) # screening based on \code{\link{Lrnr_randomForest}} variable importance xgb_lrnr <- Lrnr_xgboost$new() xgb_importance_screener <- Lrnr_screener_importance$new( learner = xgb_lrnr, num_screen = 3 ) xgb_screen_glm_pipe <- Pipeline$new(xgb_importance_screener, glm_lrnr) xgb_screen_glm_pipe_fit <- xgb_screen_glm_pipe$train(mtcars_task)
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) glm_lrnr <- make_learner(Lrnr_glm) # screening based on \code{\link{Lrnr_ranger}} variable importance ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected") ranger_importance_screener <- Lrnr_screener_importance$new( learner = ranger_lrnr_importance, num_screen = 3 ) ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr) ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task) # screening based on \code{\link{Lrnr_randomForest}} variable importance rf_lrnr <- Lrnr_randomForest$new() rf_importance_screener <- Lrnr_screener_importance$new( learner = rf_lrnr, num_screen = 3 ) rf_screen_glm_pipe <- Pipeline$new(rf_importance_screener, glm_lrnr) rf_screen_glm_pipe_fit <- rf_screen_glm_pipe$train(mtcars_task) # screening based on \code{\link{Lrnr_randomForest}} variable importance xgb_lrnr <- Lrnr_xgboost$new() xgb_importance_screener <- Lrnr_screener_importance$new( learner = xgb_lrnr, num_screen = 3 ) xgb_screen_glm_pipe <- Pipeline$new(xgb_importance_screener, glm_lrnr) xgb_screen_glm_pipe_fit <- xgb_screen_glm_pipe$train(mtcars_task)
Learner that encapsulates the Super Learner algorithm. Fits metalearner on cross-validated predictions from learners. Then forms a pipeline with the learners.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
learners
: The "library" of user-specified algorithms for the
super learner to consider as candidates.
metalearner = "default"
: The metalearner to be fit on c
cross-validated predictions from the candidates. If "default"
,
the default_metalearner
is used to construct a
metalearner based on the outcome_type
of the training
task
.
cv_control = NULL
: Optional list of arguments that will be used
to define a specific cross-validation fold structure for fitting the
super learner. Intended for use in a nested cross-validation scheme,
such as cross-validated super learner (cv_sl
) or
when Lrnr_sl
is considered in the list of candidate
learners
in another Lrnr_sl
. Includes the arguments
listed below, and any others to be passed to
fold_funs
:
strata = NULL
: Discrete covariate or outcome name to
define stratified cross-validation folds. If NULL
and if
task$outcome_type$type
is binary or categorical, then the
default behavior is to consider stratified cross-validation, where
the strata are defined with respect to the outcome. To override
the default behavior, i.e., to not consider stratified
cross-validation when strata = NULL
and
task$outcome_type$type
is binary or categorical is not
NULL
, set strata = "none"
.
cluster_by_id = TRUE
: Logical to specify clustered
cross-validation scheme according to id
in task
.
Specifically, if task$nodes$id
is not NULL
and if
cluster_by_id = TRUE
(default) then task$nodes$id
is used to define a clustered cross-validation scheme, so
dependent units are placed together in the same training sets
and validation set. To override the default behavior, i.e., to not
consider clustered cross-validation when task$nodes$id
is
not NULL
, set cluster_by_id = FALSE
.
fold_fun = NULL
: A function indicating the origami
cross-validation scheme to use, such as
folds_vfold
for V-fold cross-validation.
See fold_funs
for a list of possibilities.
If NULL
(default) and if other cv_control
arguments
are specified, e.g., V
, strata
or
cluster_by_id
, then the default behavior is to set
fold_fun = origami::folds_vfold
.
...
: Other arguments to be passed to fold_fun
, such as
V
for fold_fun = folds_vfold
. See
fold_funs
for a list fold-function-specific
possible arguments.
keep_extra = TRUE
: Stores all sub-parts of the super learner
computation. When FALSE
, the resulting object has a memory
footprint that is significantly reduced through the discarding of
intermediary data structures.
verbose = NULL
: Whether to print cv_control
-related
messages. Warnings and errors are always printed. When
verbose = NULL
, verbosity specified by option
sl3.verbose
will be used, and the default sl3.verbose
option is FALSE
. (Note: to turn on sl3.verbose
option,
set options("sl3.verbose" = TRUE)
.)
...
: Any additional parameters that can be considered by
Lrnr_base
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # this is just for illustrative purposes, not intended for real applications # of the super learner! glm_lrn <- Lrnr_glm$new() ranger_lrn <- Lrnr_ranger$new() lasso_lrn <- Lrnr_glmnet$new() eSL <- Lrnr_sl$new(learners = list(glm_lrn, ranger_lrn, lasso_lrn)) eSL_fit <- eSL$train(task) # example with cv_control, where Lrnr_sl included as a candidate eSL_nested5folds <- Lrnr_sl$new( learners = list(glm_lrn, ranger_lrn, lasso_lrn), cv_control = list(V = 5), verbose = FALSE ) dSL <- Lrnr_sl$new( learners = list(glm_lrn, ranger_lrn, lasso_lrn, eSL_nested5folds), metalearner = Lrnr_cv_selector$new(loss_squared_error) ) dSL_fit <- dSL$train(task) # example with cv_control, where we use cross-validated super learner cvSL_fit <- cv_sl( lrnr_sl = eSL_nested5folds, task = task, eval_fun = loss_squared_error ) ## End(Not run)
## Not run: data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # this is just for illustrative purposes, not intended for real applications # of the super learner! glm_lrn <- Lrnr_glm$new() ranger_lrn <- Lrnr_ranger$new() lasso_lrn <- Lrnr_glmnet$new() eSL <- Lrnr_sl$new(learners = list(glm_lrn, ranger_lrn, lasso_lrn)) eSL_fit <- eSL$train(task) # example with cv_control, where Lrnr_sl included as a candidate eSL_nested5folds <- Lrnr_sl$new( learners = list(glm_lrn, ranger_lrn, lasso_lrn), cv_control = list(V = 5), verbose = FALSE ) dSL <- Lrnr_sl$new( learners = list(glm_lrn, ranger_lrn, lasso_lrn, eSL_nested5folds), metalearner = Lrnr_cv_selector$new(loss_squared_error) ) dSL_fit <- dSL$train(task) # example with cv_control, where we use cross-validated super learner cvSL_fit <- cv_sl( lrnr_sl = eSL_nested5folds, task = task, eval_fun = loss_squared_error ) ## End(Not run)
This meta-learner provides fitting procedures for any pairing of loss or risk
function and metalearner function, subject to constraints. The optimization
problem is solved by making use of solnp
, using
Lagrange multipliers. An important note from the solnp
documentation states that the control parameters tol
and delta
are key in getting any possibility of successful convergence, therefore it
is suggested that the user change these appropriately to reflect their
problem specification. For further details, consult the documentation of the
Rsolnp package.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
learner_function = metalearner_linear
: A function(alpha, X) that
takes a vector of covariates and a matrix of data and combines them
into a vector of predictions. See metalearners
for
options.
eval_function = loss_squared_error
: A function(pred, truth) that
takes prediction and truth vectors and returns a loss vector or a risk
scalar. See loss_functions
and
risk_functions
for options and more detail.
make_sparse = TRUE
: If TRUE
, zeros out small alpha values.
convex_combination = TRUE
: If TRUE
, constrain alpha to sum
to 1.
init_0 = FALSE
: If TRUE
, alpha is initialized to all 0's,
useful for TMLE. Otherwise, it is initialized to equal weights summing
to 1, useful for Super Learner.
rho = 1
: This is used as a penalty weighting scaler for
infeasibility in the augmented objective function. The higher its
value the more the weighting to bring the solution into the feasible
region (default 1). However, very high values might lead to numerical
ill conditioning or significantly slow down convergence.
outer.iter = 400
: Maximum number of major (outer) iterations.
inner.iter = 800
: Maximum number of minor (inner) iterations.
delta = 1e-7
:Relative step size in forward difference evaluation.
tol = 1e-8
: Relative tolerance on feasibility and optimality.
trace = FALSE
: The value of the objective function and the
parameters are printed at every major iteration.
...
: Additional arguments defined in Lrnr_base
,
such as params
(like formula
) and name
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with solnp metalearner solnp_meta <- Lrnr_solnp$new() sl <- Lrnr_sl$new(lrnr_stack, solnp_meta) sl_fit <- sl$train(task)
# define ML task data(cpp_imputed) covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs") task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz") # build relatively fast learner library (not recommended for real analysis) lasso_lrnr <- Lrnr_glmnet$new() glm_lrnr <- Lrnr_glm$new() ranger_lrnr <- Lrnr_ranger$new() lrnrs <- c(lasso_lrnr, glm_lrnr) names(lrnrs) <- c("lasso", "glm") lrnr_stack <- make_learner(Stack, lrnrs) # instantiate SL with solnp metalearner solnp_meta <- Lrnr_solnp$new() sl <- Lrnr_sl$new(lrnr_stack, solnp_meta) sl_fit <- sl$train(task)
This meta-learner provides fitting procedures for density estimation, finding
convex combinations of candidate density estimators by minimizing the
cross-validated negative log-likelihood loss of each candidate density. The
optimization problem is solved by making use of solnp
,
using Lagrange multipliers. For further details, consult the documentation of
the Rsolnp
package.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
...
Not currently used.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
Stratify learner fits by a single variable
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner="learner"
An initialized Lrnr_* object.
variable_stratify="variable_stratify"
character
giving
the variable in the covariates on which to stratify. Supports only
variables with discrete levels coded as numeric
.
...
Other parameters passed directly to
learner$train
. See its documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table) # load example data set data(cpp_imputed) setDT(cpp_imputed) # use covariates of intest and the outcome to build a task object covars <- c("apgar1", "apgar5", "sexn") task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = "haz") hal_lrnr <- Lrnr_hal9001$new(fit_control = list(n_folds = 3)) stratified_hal <- Lrnr_stratified$new( learner = hal_lrnr, variable_stratify = "sexn" ) # stratified learner set.seed(123) stratified_hal_fit <- stratified_hal$train(task) stratified_prediction <- stratified_hal_fit$predict(task = task)
library(data.table) # load example data set data(cpp_imputed) setDT(cpp_imputed) # use covariates of intest and the outcome to build a task object covars <- c("apgar1", "apgar5", "sexn") task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = "haz") hal_lrnr <- Lrnr_hal9001$new(fit_control = list(n_folds = 3)) stratified_hal <- Lrnr_stratified$new( learner = hal_lrnr, variable_stratify = "sexn" ) # stratified learner set.seed(123) stratified_hal_fit <- stratified_hal$train(task) stratified_prediction <- stratified_hal_fit$predict(task = task)
This learner provides fitting procedures for subsetting covariates. It is a convenience utility for reducing the number of covariates to be fit.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
...
Not currently used.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# load example data data(cpp_imputed) covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn") outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome, folds = origami::make_folds(cpp_imputed, V = 3) ) glm_learner <- Lrnr_glm$new() glmnet_learner <- Lrnr_glmnet$new() subset_apgar <- Lrnr_subset_covariates$new(covariates = c("apgar1", "apgar5")) learners <- list(glm_learner, glmnet_learner, subset_apgar) sl <- make_learner(Lrnr_sl, learners, glm_learner) sl_fit <- sl$train(task) sl_pred <- sl_fit$predict()
# load example data data(cpp_imputed) covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn") outcome <- "haz" # create sl3 task task <- sl3_Task$new(data.table::copy(cpp_imputed), covariates = covars, outcome = outcome, folds = origami::make_folds(cpp_imputed, V = 3) ) glm_learner <- Lrnr_glm$new() glmnet_learner <- Lrnr_glmnet$new() subset_apgar <- Lrnr_subset_covariates$new(covariates = c("apgar1", "apgar5")) learners <- list(glm_learner, glmnet_learner, subset_apgar) sl <- make_learner(Lrnr_sl, learners, glm_learner) sl_fit <- sl$train(task) sl_pred <- sl_fit$predict()
This learner provides fitting procedures for support vector machines, using
the routines from e1071 (described in Meyer et al. (2021)
and Chang and Lin (2011), the core library to which e1071
is an interface) through a call to the function svm
.
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
scale = TRUE
: A logical vector indicating the variables to be
scaled. For a detailed description, please consult the documentation
for svm
.
type = NULL
: SVMs can be used as a classification machine, as a
a regression machine, or for novelty detection. Depending of whether
the outcome is a factor or not, the default setting for this argument
is "C-classification" or "eps-regression", respectively. This may be
overwritten by setting an explicit value. For a full set of options,
please consult the documentation for svm
.
kernel = "radial"
: The kernel used in training and predicting.
You may consider changing some of the optional parameters, depending
on the kernel type. Kernel options include: "linear", "polynomial",
"radial" (the default), "sigmoid". For a detailed description, consult
the documentation for svm
.
fitted = TRUE
: Logical indicating whether the fitted values
should be computed and included in the model fit object or not.
probability = FALSE
: Logical indicating whether the model should
allow for probability predictions.
...
: Other parameters passed to svm
. See its
documentation for details.
Chang C, Lin C (2011).
“LIBSVM: A library for support vector machines.”
ACM Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27.
Software available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2021).
e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.
R package version 1.7-6, https://CRAN.R-project.org/package=e1071.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars) # create task for prediction mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # initialization, training, and prediction with the defaults svm_lrnr <- Lrnr_svm$new() svm_fit <- svm_lrnr$train(mtcars_task) svm_preds <- svm_fit$predict()
data(mtcars) # create task for prediction mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # initialization, training, and prediction with the defaults svm_lrnr <- Lrnr_svm$new() svm_fit <- svm_lrnr$train(mtcars_task) svm_preds <- svm_fit$predict()
A wrapper around any learner that reweights observations. This reweighted is intended for time series, and ultimately assigns weights to losses. This learner is particularly useful as a metalearner wrapper. It can be used to create a time-adaptive ensemble, where a super learner is created in a manner that places more weight (with max weight of 1) on recent losses, and less weight is placed on losses further in the past.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner
The learner to wrap
folds=NULL
An origami
folds object. If NULL
,
folds from the task are used
full_fit=FALSE
If TRUE
, also fit the underlying
learner on the full data. This can then be accessed with
predict_fold(task, fold_number="full")
window
Observations corresponding to times outside of the
window are assigned weight of 0, and obervations corresponding to times
within the window are assigned weight of 1. The window is defined with
respect to the difference from the maximum time, where all times are
obtained from the task node for time. For example, if the maximum time is
100 and the window is 10, then obervations corresponding to times 90-100
are assigned weight 1 and obervations for times 1-89 are assigned weight 0.
If rate
is provided with window
, then times within the
window are assigned according to the rate
argument (and potentially
delay_decay
), and the times outside of the window are still
assigned weight of 0.
rate
A rate of decay to apply to the losses, where the decay function is (1-rate)^lag and the lag is the difference from all times to the maximum time.
delay_decay
The amount of time to delay decaying weights,
for optional use with rate
argument. The delay decay is subtracted
from the lags, such that lags less than the delay decay have lag of 0 and
thus weight of 1. For example, a delay decay of 10 assigns weight 1 to
observations that are no more than 10 time points away from the maximum
time; and for observations that are more than 10 time points away from the
maximum time, the weight is assigned according to the decay function.
In this example, observations corresponding to 11 time points away from the
maximum time would be assigned lag=1, 11-10, when setting the weights
with respect to (1-rate)^lag.
...
Not currently used.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
This learner supports various forms of nonlinear autoregression, including additive AR, neural nets, SETAR and LSTAR models, threshold VAR and VECM.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
learner
Available built-in time series models. Currently available can be listed with availableModels() function.
m = 1
embedding dimension.
...
Additional learner-specific arguments.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
This learner provides fitting procedures for xgboost
models, using
the xgboost package, via xgb.train
. Such
models are classification and regression trees with extreme gradient
boosting. For details on the fitting procedure, consult the documentation of
the xgboost and Chen and Guestrin (2016)).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
nrounds=20
: Number of fitting iterations.
...
: Other parameters passed to xgb.train
.
Chen T, Guestrin C (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 785–794.
Lrnr_gbm for standard gradient boosting models (via the gbm package) and Lrnr_lightgbm for the faster and more efficient gradient boosted trees from the LightGBM framework (via the lightgbm package).
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # initialization, training, and prediction with the defaults xgb_lrnr <- Lrnr_xgboost$new() xgb_fit <- xgb_lrnr$train(mtcars_task) xgb_preds <- xgb_fit$predict() # get feature importance from fitted model xgb_varimp <- xgb_fit$importance()
data(mtcars) mtcars_task <- sl3_Task$new( data = mtcars, covariates = c( "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb" ), outcome = "mpg" ) # initialization, training, and prediction with the defaults xgb_lrnr <- Lrnr_xgboost$new() xgb_fit <- xgb_lrnr$train(mtcars_task) xgb_preds <- xgb_fit$predict() # get feature importance from fitted model xgb_varimp <- xgb_fit$importance()
Produce a stack of learners by passing in a list with IDs for the learners. The resultant stack of learners may then be used as normal.
make_learner_stack(...)
make_learner_stack(...)
... |
Each argument is a list that will be passed to
|
An sl3
Stack
consisting of the learners passed in as
arguments the list
argument to this function. This Stack
has
all of the standard methods associated with such objects.
# constructing learners with default settings sl_stack_easy <- make_learner_stack( "Lrnr_mean", "Lrnr_glm_fast", "Lrnr_xgboost" ) # constructing learners with arguments passed in sl_stack <- make_learner_stack( "Lrnr_mean", list("Lrnr_hal9001", n_folds = 10, use_min = TRUE ) )
# constructing learners with default settings sl_stack_easy <- make_learner_stack( "Lrnr_mean", "Lrnr_glm_fast", "Lrnr_xgboost" ) # constructing learners with arguments passed in sl_stack <- make_learner_stack( "Lrnr_mean", list("Lrnr_hal9001", n_folds = 10, use_min = TRUE ) )
Combine predictions from multiple learners
metalearner_logistic_binomial(alpha, X, trim) metalearner_linear(alpha, X) metalearner_linear_multivariate(alpha, X) metalearner_linear_multinomial(alpha, X)
metalearner_logistic_binomial(alpha, X, trim) metalearner_linear(alpha, X) metalearner_linear_multivariate(alpha, X) metalearner_linear_multinomial(alpha, X)
alpha |
a vector of combination coefficients |
X |
a matrix of predictions |
trim |
a value use to trim predictions away from 0 and 1. |
Pack multidimensional predictions into a vector (and unpack again)
pack_predictions(pred_matrix) unpack_predictions(x) ## S3 method for class 'packed_predictions' print(x, ...) normalize_rows(x)
pack_predictions(pred_matrix) unpack_predictions(x) ## S3 method for class 'packed_predictions' print(x, ...) normalize_rows(x)
pred_matrix |
a matrix of prediciton values |
x |
a packed prediction list |
... |
ignored |
A Pipeline of learners is a way to "chain" Learners together, where the
output of one learner is used as output for the next learner. This can be
used for things like screening, two stage machine learning methods, and Super
Learning. A pipeline is fit by fitting the first Learner
, calling
chain()
to create the next task, which becomes the training data for
the next Learner
. Similarly, for prediction, the predictions from the
first Learner
become the data to predict on for the next
Learner
.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
...
Parameters should be individual Learner
s, in the
order they should be applied.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Stack
,
define_h2o_X()
,
undocumented_learner
Generate A Pooled Hazards Task from a Failure Time (or Categorical) Task
pooled_hazard_task(task, trim = TRUE)
pooled_hazard_task(task, trim = TRUE)
task |
A |
trim |
If |
Returns the most likely class label for each row of predicted class probabilities
predict_classes(predictions)
predict_classes(predictions)
predictions |
the nxc matrix where each row are predicted probabilities for one observation for each of c classes. |
a vector of length n, the predicted class labels as a factor variable
If a Lrnr_sl fit is provided, predictions will be generated from the cross-validated learner fits and final metalearner fit. Otherwise, non cross-validated predictions will be used an an error will be thrown
prediction_plot(learner_fit)
prediction_plot(learner_fit)
learner_fit |
A fit sl3 learner object. Ideally from a Lrnr_sl |
A ggplot2 object
A function called upon creating a task that uses the data provided to the task in order to process the covariates and identify missingness in the outcome. See parameters and details for more information.
process_data(data, nodes, column_names, flag = TRUE, drop_missing_outcome = FALSE)
process_data(data, nodes, column_names, flag = TRUE, drop_missing_outcome = FALSE)
data |
A |
nodes |
A list of character vectors for |
column_names |
A named list of column names in the data, which is
generated when creating the |
flag |
Logical (default |
drop_missing_outcome |
Logical (default |
If the data provided to the task contains missing covariate values,
then a few things will happen. First, for each covariate with missing values,
if the proportion of missing values is greater than
getOption("sl3.max_p_missing")
, the covariate will be dropped. (The
default option "sl3.max_p_missing"
is 0.5 and it can be modified to
say, 0.75, by setting options("sl3.max_p_missing" = 0.75)
). Also,
for each covariate with missing values that was not dropped, a so-called
"missingness indicator" (that takes the name of the covariate with prefix
"delta_") will be added as an additional covariate. The missingness
indicator will take a value of 0 if the covariate value was missing and 1
if not. Also, imputation will be performed for each covariate with missing
values: continuous covariates are imputed with the median, and discrete
covariates are imputed with the mode. This coupling of imputation and
missingness indicators removes the missing covariate values, while
preserving the pattern of missingness, respectively. To avoid this default
imputation, users can perform imputation on their analytic dataset before
supplying it to make_sl3_Task
. We generally recommend the
missingness indicators be added regardless of the imputation strategy,
unless missingness is very rare.
This function also coverts any character covariates to factors, and one-hot encodes factor covariates.
Lastly, if the outcome
is supplied in creating the
sl3_Task
and if missing outcome values are detected in
data
, then a warning will be thrown. If
drop_missing_outcome = TRUE
then observations with missing outcomes
will be dropped.
A list of processed data, nodes and column names
Estimates a risk for a given set of predictions and loss function.
risk(pred, observed, loss = loss_squared_error, weights = NULL)
risk(pred, observed, loss = loss_squared_error, weights = NULL)
pred |
A vector of predicted values. |
observed |
A vector of observed values. |
loss |
A loss function. For options, see loss_functions. |
weights |
A vector of weights. |
Factory function for estimating an ROCR-based risk for a given ROCR measure, and the risk is defined as one minus the performance measure.
custom_ROCR_risk(measure, cutoff = 0.5, name = NULL, ...)
custom_ROCR_risk(measure, cutoff = 0.5, name = NULL, ...)
measure |
A character indicating which |
cutoff |
A numeric value specifying the cutoff for choosing a single
performance measure from the returned set. Only used for performance
measures that are cutoff-dependent and default is 0.5. See
|
name |
An optional character string for user to supply their desired
name for the performance measure, which will be used for naming subsequent
risk-related tables and metrics (e.g., |
... |
Optional arguments to specific |
This risk does not take into account weights. In order to use this risk, it must first be instantiated with respect to the ROCR performance measure of interest, and then the user-defined function can be used.
safe_dim
tries to get dimensions from dim
and falls back on
length
if dim
returns NULL
safe_dim(x)
safe_dim(x)
x |
the object to get dimensions from |
Lists learners in sl3
(defined as objects that start with Lrnr_
and inherit from Lrnr_base
)
sl3_list_properties() sl3_list_learners(properties = c())
sl3_list_properties() sl3_list_learners(properties = c())
properties |
a vector of properties that learners must match to be returned |
a vector of learner names that match the property list
A task that has different realizations in different folds Useful for Revere CV operations
Learners with property "cv" must use these tasks correctly
Other learners will treat this as the equivalent of the "full" task.
An increasingly thick wrapper around a data.table
containing the data for a prediction task. This contains metadata about the
particular machine learning problem, including which variables are to be
used as covariates and outcomes.
make_sl3_Task(...)
make_sl3_Task(...)
... |
Passes all arguments to the constructor. See documentation for Constructor below. |
R6Class
object.
sl3_Task
object
make_sl3_Task(data, covariates, outcome = NULL, outcome_type = NULL, outcome_levels = NULL,
id = NULL, weights = NULL, offset = NULL, nodes = NULL, column_names = NULL,
folds = NULL, drop_missing_outcome = FALSE, flag = TRUE)
data
A data.frame
or data.table
containing the analytic dataset.
covariates
A character vector of variable names that define the set of covariates.
outcome
A character vector of variable names that define the set of outcomes. Usually just one variable, although some learners support multivariate outcomes. Use sl3_list_learners("multivariate_outcome")
to find such learners.
outcome_type
A Variable_type
object that defines the variable type of the outcome. Alternatively, a character specifying such a type. See variable_type
for details on defining variable types.
outcome_levels
A vector of levels expected for the outcome variable. If outcome_type
is a character, this will be used to construct an appropriate variable_type
object.
id
A character indicating which variable (if any) to be used as an identifier for independent observations, which would be necessary if there are clusters of dependent units in the data (e.g., repeated measures on the same individual). The id
is used to define a clustered cross-validation scheme (if folds
is not already supplied to make_sl3_Task
), for learners that use cross-validation as part of their fitting procedure. Use sl3_list_learners("ids")
to find learners whose fitting procedures support clustered observations, and use sl3_list_learners("cv")
to find learners whose fitting procedures involve cross-validation.
weights
A character indicating which variable (if any) to be used as observation weights, for learners that support that. Use sl3_list_learners("weights")
to find such learners.
offset
A character indicating which variable (if any) to be used as an observation offset, for learners that support that. Use sl3_list_learners("offset")
to find such learners.
nodes
A list of character vectors as nodes. This will override the covariates
, outcome
, id
, weights
, and offset
arguments if specified, serving as an alternative way to specify those arguments.
column_names
A named list of characters that maps between column names in data
and how those variables are referenced in sl3_Task
functions.
drop_missing_outcome
Logical indicating whether to drop outcomes that are missing.
flag
Logical indicating whether to notify the user when there are outcomes that are missing.
folds
An optional origami fold object, as generated by make_folds
, specifying a cross-validation scheme. If NULL
(default), a V-fold cross-validation scheme with V = 10 will be considered for learners that use cross-validation as part of their fitting procedure. Also, if NULL
(default) and id
is specified, then a clustered V-fold cross-validation procedure with 10 folds will be considered. Use sl3_list_learners("cv")
to find learners whose fitting procedures involve cross-validation.
add_interactions(interactions, warn_on_existing = TRUE)
Adds interaction terms to task, returns a task with interaction terms added to covariate list.
interactions
: A list of lists, where each sublist describes one interaction term, listing the variables that comprise it
warn_on_existing
: If TRUE, produce a warning if there is already a column with a name matching this interaction term
add_columns(fit_uuid, new_data, global_cols=FALSE)
Add columns to internal data, returning an updated vector of column_names
fit_uuid
: A uuid character that is used to generate unique internal column names.
This prevents two added columns with the same name overwriting each other, provided they have different fit_uuid.
new_data
: A data.table containing the columns to add
global_cols
: If true, don't use the fit_uuid to make unique column names
next_in_chain(covariates=NULL, outcome=NULL, id=NULL, weights=NULL,
offset=NULL, column_names=NULL, new_nodes=NULL, ...)
Used by learner$chain methods to generate a task with the same underlying data, but redefined nodes.
Most of the parameter values are passed to the sl3_Task
constructor, documented above.
covariates
: An updated covariates character vector
outcome
: An updated outcome character vector
id
: An updated id character value
weights
: An updated weights character value
offset
: An updated offset character value
column_names
: An updated column_names character vector
new_nodes
: An updated list of node names
...
: Other arguments passed to the sl3_Task
constructor for the new task
subset_task(row_index)
Returns a task with rows subsetted using the row_index
index vector
row_index
: An index vector defining the subset
get_data(rows, columns)
Returns a data.table
containing a subset of task data.
rows
: An index vector defining the rows to return
columns
: A character vector of columns to return.
has_node(node_name)
Returns true if the node is defined in the task
node_name
: The name of the node to look for
get_node(node_name, generator_fun=NULL)
Returns a ddta.table with the requested node's data
node_name
: The name of the node to look for
generator_fun
: A function(node_name, n)
that can generate the node if it was not specified in the task.
raw_data
Internal representation of the data
data
Formatted task data
nrow
Number of observations
nodes
A list of node variables
X
a data.table containing the covariates
X
a data.table containing the covariates and an intercept term
Y
a vector containing the outcomes
offsets
a vector containing the offset. Will return an error if the offset wasn't specified on construction
weights
a vector containing the observation weights. If weights aren't specified on construction, weights will default to 1
id
a vector containing the observation units. If the ids aren't specified on construction, id will return seq_len(nrow)
folds
An origami fold object, as generated by make_folds
, specifying a cross-validation scheme
uuid
A unique identifier of this task
column_names
The named list mapping variable names to internal column names
outcome_type
A variable_type
object specifying the type of the outcome
sl3
optionTo list all sl3
options, just run this function without any parameters
provided. To query only one value, pass the first parameter. To set that,
use the value
parameter too.
sl3Options(o, value)
sl3Options(o, value)
o |
Option name (string). |
value |
Value to assign (optional) |
## Not run: sl3Options() sl3Options("sl3.verbose") sl3Options("sl3.temp.dir") sl3Options("sl3.verbose", TRUE) ## End(Not run) #
## Not run: sl3Options() sl3Options("sl3.verbose") sl3Options("sl3.temp.dir") sl3Options("sl3.verbose", TRUE) ## End(Not run) #
A Stack is a special Learner that combines multiple other learners, "stacking" their predictions in columns.
R6Class
object.
Lrnr_base
object with methods for training and
prediction
...
Parameters should be individual Learner
s.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base
, and shared
by all learners.
covariates
A character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_type
A variable_type
object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...
All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
define_h2o_X()
,
undocumented_learner
subset_folds takes a origami style folds list, and returns a list of folds applicable to a subset, by subsetting the training and validation index vectors
subset_folds(folds, subset)
subset_folds(folds, subset)
folds |
an origami style folds list |
subset |
an index vector to be used to subset the data |
Subset Tasks for CV THe functions use origami folds to subset tasks. These functions are used by Lrnr_cv (and therefore other learners that use Lrnr_cv). So that nested cv works properly, currently the subsetted task objects do not have fold structures of their own, and so generate them from defaults if nested cv is requested.
train_task(task, fold) validation_task(task, fold)
train_task(task, fold) validation_task(task, fold)
task |
a task to subset |
fold |
an origami fold object to use for subsetting |
We haven't documented this one yet. Feel free to contribute!
R6Class
object.
Lrnr_base
object with methods for training and
prediction.
params
A list of parameters needed to fully specify the learner. This includes things like model hyperparameters.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv
,
Lrnr_cv_selector
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_ga
,
Lrnr_gam
,
Lrnr_gbm
,
Lrnr_glm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_grf
,
Lrnr_grfcate
,
Lrnr_gru_keras
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp
,
Lrnr_solnp_density
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
Specify Variable Type
variable_type(type = NULL, levels = NULL, bounds = NULL, x = NULL, pcontinuous = getOption("sl3.pcontinuous"))
variable_type(type = NULL, levels = NULL, bounds = NULL, x = NULL, pcontinuous = getOption("sl3.pcontinuous"))
type |
A type name. Valid choices include "binomial", "categorical", "continuous", and "multivariate". When not specified, this is inferred. |
levels |
Valid levels for discrete types. |
bounds |
Bounds for continuous variables. |
x |
Data to use for inferring type if not specified. |
pcontinuous |
If |
sl3
LearnerGenerates a template file that can be used to write new sl3 Learners. For more information, see the Defining New Learners vignette.
write_learner_template(file)
write_learner_template(file)
file |
the path where the file should be written |
the return from file.copy
. TRUE
if writing the
template was successful.