
Package: sl3 (via r-universe)
November 14, 2024

Title Pipelines for Machine Learning and Super Learning

Version 1.4.5

Maintainer Jeremy Coyle <jeremyrcoyle@gmail.com>

Description A modern implementation of the Super Learner prediction
algorithm, coupled with a general purpose framework for
composing arbitrary pipelines for machine learning tasks.

Depends R (>= 3.6.0)

Imports data.table, assertthat, origami (>= 1.0.7), R6, uuid, BBmisc,
stats, delayed, utils, methods, ggplot2, digest, Rdpack, dplyr,
caret, ROCR

Suggests testthat, rmarkdown, devtools, R.rsp, future, knitr, stringr,
reticulate, rgl, rJava, arm, bartMachine, cvAUC, e1071, earth,
polspline, forecast, glmnet, grf, gbm, hal9001 (>= 0.4.6), h2o,
keras, nloptr, nnls, randomForest, ranger, rpart, Rsolnp,
rugarch, speedglm, SuperLearner, tsDyn, xgboost, lightgbm,
dbarts, gam, haldensify (>= 0.2.7), mgcv, hts, GA, SIS,
partykit

Remotes github::nhejazi/haldensify

Additional_repositories https://tlverse.r-universe.dev

License GPL-3

Language en-US

URL https://tlverse.org/sl3/

BugReports https://github.com/tlverse/sl3/issues

Encoding UTF-8

LazyData yes

LazyLoad yes

VignetteBuilder knitr, R.rsp

Roxygen list(markdown = TRUE, old_usage = TRUE, r6 = FALSE)

RoxygenNote 7.3.2

1

https://tlverse.r-universe.dev
https://tlverse.org/sl3/
https://github.com/tlverse/sl3/issues

2 Contents

RdMacros Rdpack

Config/pak/sysreqs libglpk-dev make libicu-dev libxml2-dev

Repository https://tlverse.r-universe.dev

RemoteUrl https://github.com/tlverse/sl3

RemoteRef fix-tests

RemoteSha 4bb008e655592123e11cc0135fa1c52d19d2e37a

Contents
args_to_list . 4
bsds . 4
cpp . 5
cpp_1yr . 7
Custom_chain . 7
cv_risk . 8
cv_sl . 9
debug_train . 10
default_metalearner . 10
define_h2o_X . 11
delayed_make_learner . 13
density_dat . 14
factor_to_indicators . 14
importance . 15
importance_plot . 17
inverse_sample . 18
loss_functions . 18
Lrnr_arima . 19
Lrnr_bartMachine . 20
Lrnr_base . 21
Lrnr_bayesglm . 24
Lrnr_bound . 25
Lrnr_caret . 26
Lrnr_cv . 27
Lrnr_cv_selector . 28
Lrnr_dbarts . 30
Lrnr_define_interactions . 32
Lrnr_density_discretize . 33
Lrnr_density_hse . 35
Lrnr_density_semiparametric . 36
Lrnr_earth . 37
Lrnr_expSmooth . 39
Lrnr_ga . 41
Lrnr_gam . 42
Lrnr_gbm . 44
Lrnr_glm . 45
Lrnr_glmnet . 46

Contents 3

Lrnr_glmtree . 48
Lrnr_glm_fast . 49
Lrnr_glm_semiparametric . 50
Lrnr_grf . 54
Lrnr_grfcate . 56
Lrnr_gru_keras . 57
Lrnr_h2o_grid . 59
Lrnr_hal9001 . 61
Lrnr_haldensify . 62
Lrnr_HarmonicReg . 64
Lrnr_independent_binomial . 65
Lrnr_lightgbm . 67
Lrnr_lstm_keras . 68
Lrnr_mean . 70
Lrnr_multiple_ts . 71
Lrnr_multivariate . 73
Lrnr_nnet . 74
Lrnr_nnls . 76
Lrnr_optim . 77
Lrnr_pca . 78
Lrnr_pkg_SuperLearner . 80
Lrnr_polspline . 81
Lrnr_pooled_hazards . 82
Lrnr_randomForest . 84
Lrnr_ranger . 85
Lrnr_revere_task . 86
Lrnr_rpart . 87
Lrnr_rugarch . 88
Lrnr_screener_augment . 90
Lrnr_screener_coefs . 91
Lrnr_screener_correlation . 93
Lrnr_screener_importance . 94
Lrnr_sl . 96
Lrnr_solnp . 98
Lrnr_solnp_density . 100
Lrnr_stratified . 101
Lrnr_subset_covariates . 102
Lrnr_svm . 103
Lrnr_tsDyn . 105
Lrnr_ts_weights . 106
Lrnr_xgboost . 107
make_learner_stack . 108
metalearners . 109
pack_predictions . 110
Pipeline . 110
pooled_hazard_task . 111
prediction_plot . 112
predict_classes . 112

4 bsds

process_data . 113
risk . 114
risk_functions . 114
safe_dim . 115
Shared_Data . 115
sl3Options . 116
sl3_list_properties . 116
sl3_revere_Task . 117
sl3_Task . 117
Stack . 120
subset_folds . 121
train_task . 121
undocumented_learner . 122
Variable_Type . 123
write_learner_template . 123

Index 124

args_to_list Get all arguments of parent call (both specified and defaults) as list

Description

Get all arguments of parent call (both specified and defaults) as list

Usage

args_to_list()

Value

A list of all arguments for the parent function call.

bsds Bicycle sharing time series dataset

Description

Bicycle sharing time series dataset from the UCI Machine Learning Repository.

Usage

data(bsds)

cpp 5

Source

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

Fanaee-T, Hadi, and Gama, Joao, ’Event labeling combining ensemble detectors and background
knowledge’, Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg

Examples

data(bsds)
head(bsds)
#

cpp Subset of growth data from the collaborative perinatal project (CPP)

Description

Subset of growth data from the collaborative perinatal project (CPP). cpp_imputed drops observa-
tions for which the haz column is NA, and imputes all other observations as 0. This is only for the
purposes of simplifying testing and examples.

Usage

data(cpp)

data(cpp_imputed)

Format

A data frame with 1,912 repated-measures observations and 500 unique subjects:

subjid Subject ID

agedays Age since birth at examination (days)

wtkg Weight (kg)

htcm Standing height (cm)

lencm Recumbent length (cm)

bmi BMI (kg/m**2)

waz Weight for age z-score

haz Length/height for age z-score

whz Weight for length/height z-score

baz BMI for age z-score

siteid Investigational Site ID

sexn Sex (num)

sex Sex

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

6 cpp

feedingn Maternal breastfeeding status (num)

feeding Maternal breastfeeding status

gagebrth Gestational age at birth (days)

birthwt Birth weight (gm)

birthlen Birth length (cm)

apgar1 APGAR Score 1 min after birth

apgar5 APGAR Score 5 min after birth

mage Maternal age at birth of child (yrs)

mracen Maternal race (num)

mrace Maternal race

mmaritn Mothers marital status (num)

mmarit Mothers marital status

meducyrs Mother, years of education

sesn Socio-economic status (num)

ses Socio-economic status

parity Maternal parity

gravida Maternal num pregnancies

smoked Maternal smoking status

mcignum Num cigarettes mom smoked per day

comprisk Maternal risk factors

Source

https://catalog.archives.gov/id/606622

Broman, Sarah. ’The collaborative perinatal project: an overview.’ Handbook of longitudinal re-
search 1 (1984): 185-227.

Examples

data(cpp)
head(cpp)
#

https://catalog.archives.gov/id/606622

cpp_1yr 7

cpp_1yr Subset of growth data from the collaborative perinatal project (CPP)

Description

Subset of growth data from the collaborative perinatal project (CPP) at single time-point. The rows
in original cpp data were subset for agedays==366. See ?cpp for the description of the variables.

Usage

data(cpp_1yr)

Source

https://catalog.archives.gov/id/606622

Broman, Sarah. ’The collaborative perinatal project: an overview.’ Handbook of longitudinal re-
search 1 (1984): 185-227.

Examples

data(cpp_1yr)
head(cpp_1yr)
table(cpp_1yr[["agedays"]])
#

Custom_chain Customize chaining for a learner

Description

This function wraps a learner in such a way that the behavior of learner$chain is modified to use
a new function definition. learner$train and learner$predict are unaffected.

Usage

customize_chain(learner, chain_fun)

Arguments

learner A sl3 learner to modify.

chain_fun A function with arguments learner and task that defines the new chain behav-
ior.

Format

R6Class object.

https://catalog.archives.gov/id/606622

8 cv_risk

Value

Lrnr_base object with methods for training and prediction

Fields

params A list of learners to chain.

Methods

new(...) This method is used to create a pipeline of learners. Arguments should be individual
Learners, in the order they should be applied.

See Also

Other Learners: Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base, Lrnr_bayesglm,
Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

cv_risk Cross-validated Risk Estimation

Description

Estimates the cross-validated risk for a given learner and evaluation function, which can be either a
loss or a risk function.

Usage

cv_risk(learner, eval_fun = NULL, coefs = NULL)

Arguments

learner A trained learner object.

eval_fun A valid loss or risk function. See loss_functions and risk_functions.

coefs A numeric vector of coefficients.

cv_sl 9

cv_sl Cross-validated Super Learner

Description

Cross-validated Super Learner

Usage

cv_sl(lrnr_sl, eval_fun)

Arguments

lrnr_sl a Lrnr_sl object specifying the Super Learner. Note that the cv_control ar-
gument of Lrnr_sl can be specified to control the inner cross-validation of
lrnr_sl, as shown in the example.

eval_fun the evaluation function, either a loss or risk function, for evaluating the Super
Learner’s predictions.

Value

A list of containing the following: the table of cross-validated risk estimates of the super learner and
the candidate learners used to construct it, and either a matrix of coefficients for the super learner
on each fold or a list for the metalearner fit on each fold.

Examples

Not run:
data(cpp_imputed)
cpp_task <- sl3_Task$new(

data = cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage"),
outcome = "haz"

)
glm_lrn <- Lrnr_glm$new()
ranger_lrn <- Lrnr_ranger$new()
lasso_lrn <- Lrnr_glmnet$new()
sl <- Lrnr_sl$new(

learners = list(glm_lrn, ranger_lrn, lasso_lrn),
cv_control = list(V = 5),
verbose = FALSE

)
cv_sl_object <- cv_sl(

lrnr_sl = sl, eval_fun = loss_squared_error
)

End(Not run)

10 default_metalearner

debug_train Helper functions to debug sl3 Learners

Description

Helper functions to debug sl3 Learners

Usage

debug_train(learner, once = FALSE)

debugonce_train(learner)

debug_predict(learner, once = FALSE)

debugonce_predict(learner)

sl3_debug_mode(enabled = TRUE)

undebug_learner(learner)

Arguments

learner the learner to debug

once if true, use debugonce instead of debug

enabled enable/disable the use of future (debugging is easier without futures)

default_metalearner Automatically Defined Metalearner

Description

A sensible metalearner is chosen based on the outcome type.

Usage

default_metalearner(outcome_type)

Arguments

outcome_type a Variable_Type object

define_h2o_X 11

Details

For binary and continuous outcome types, the default metalearner is non-negative least squares
(NNLS) regression (Lrnr_nnls), and for others the metalearner is Lrnr_solnp with an appropriate
loss and combination function, shown in the table below.

Outcome Type Combination Function Loss Function
categorical metalearner_linear_multinomial loss_loglik_multinomial
multivariate metalearner_linear_multivariate loss_squared_error_multivariate

define_h2o_X h2o Model Definition

Description

Definition of h2o type models. This function is for internal use only. This function uploads input
data into an h2o.Frame, allowing the data to be subset to the task$X data.table by a smaller set
of covariates if spec’ed in params.

This learner provides faster fitting procedures for generalized linear models by using the h2o pack-
age and the h2o.glm method. The h2o Platform fits GLMs in a computationally efficient manner.
For details on the procedure, consult the documentation of the h2o package.

Usage

define_h2o_X(task, outcome_type = NULL)

Arguments

task An object of type Lrnr_base as defined in this package.

outcome_type An object of type Variable_Tyoe for use in formatting the outcome

Format

R6Class object.

Value

Learner object with methods for training and prediction. See Lrnr_base for documentation on
learners.

12 define_h2o_X

Parameters

intercept=TRUE If TRUE, and intercept term is included.

standardize=TRUE Standardize covariates to have mean = 0 and SD = 1.

lambda=0 Lasso Parameter.

max_iterations=100 Maximum number of iterations.

ignore_const_columns=FALSE If TRUE, drop constant covariate columns

missing_values_handling="Skip" How to handle missing values.

... Other arguments passed to h2o.glm.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, undocumented_learner

Examples

Not run:
library(h2o)
suppressWarnings(h2o.init())

load example data
data(cpp_imputed)

create sl3 task
task <- sl3_Task$new(

delayed_make_learner 13

cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"),
outcome = "haz"

)

train h2o glm learner and make predictions
lrnr_h2o <- Lrnr_h2o_glm$new()
lrnr_h2o_fit <- lrnr_h2o$train(task)
lrnr_h2o_pred <- lrnr_h2o_fit$predict()

End(Not run)

delayed_make_learner Learner helpers

Description

Learner helpers

Usage

delayed_make_learner(learner_class, ...)

learner_train(learner, task, trained_sublearners)

delayed_learner_train(learner, task, name = NULL)

learner_fit_predict(learner_fit, task = NULL)

delayed_learner_fit_predict(learner_fit, task = NULL)

learner_fit_chain(learner_fit, task = NULL)

delayed_learner_fit_chain(learner_fit, task = NULL)

learner_subset_covariates(learner, task)

learner_process_formula(learner, task)

delayed_learner_subset_covariates(learner, task)

delayed_learner_process_formula(learner, task)

Arguments

learner_class The learner class to instantiate.

... Parameters with which to instantiate the learner.

14 factor_to_indicators

learner A learner object to fit to the task.

task The task on which to fit.
trained_sublearners

Any data obtained from a train_sublearners step.

name a more detailed name for this delayed task, if necessary

learner_fit a learner object that has already been fit

density_dat Simulated data with continuous exposure

Description

Simulated data with continuous exposure, used with examples of conditional density estimation.

Usage

data(density_dat)

Examples

data(density_dat)
head(density_dat)
#

factor_to_indicators Convert Factors to indicators

Description

replicates the functionality of model.matrix, but faster

Replicates the functionality of model.matrix, but faster

Usage

factor_to_indicators(x, ind_ref_mat = NULL)

dt_expand_factors(dt)

Arguments

x the factor to expand

ind_ref_mat a matrix used for expansion, if NULL generated automatically

dt the dt to expand

importance 15

importance Importance Extract variable importance measures produced by
randomForest and order in decreasing order of importance.

Description

Function that takes a cross-validated fit (i.e., cross-validated learner that has already been trained on
a task), which could be a cross-validated single learner or super learner, and generates a risk-based
variable importance score for either each covariate or each group of covariates in the task. This
function outputs a data.table, where each row corresponds to the risk difference or the risk ratio
between the following two risks: the risk when a covariate (or group of covariates) is permuted or
removed, and the original risk (i.e., when all covariates are included as they were in the observed
data). A higher risk ratio/difference corresponds to a more important covariate/group. A plot can
be generated from the returned data.table by calling companion function importance_plot.

Usage

importance(fit, eval_fun = NULL, fold_number = "validation",
type = c("remove", "permute"), importance_metric = c("difference",
"ratio"), covariate_groups = NULL)

importance(fit, eval_fun = NULL, fold_number = "validation",
type = c("remove", "permute"), importance_metric = c("difference",
"ratio"), covariate_groups = NULL)

Arguments

fit A trained cross-validated (CV) learner (such as a CV stack or super learner),
from which cross-validated predictions can be generated.

eval_fun The evaluation function (risk or loss function) for evaluating the risk. Defaults
vary based on the outcome type, matching defaults in default_metalearner.
See loss_functions and risk_functions for options. Default is NULL.

fold_number The fold number to use for obtaining the predictions from the fit. Either a pos-
itive integer for obtaining predictions from a specific fold’s fit; "full" for ob-
taining predictions from a fit on all of the data, or "validation" (default) for
obtaining cross-validated predictions, where the data used for training and pre-
diction never overlaps across the folds. Note that if a positive integer or "full"
is supplied here then there will be overlap between the data used for training and
validation, so fold_number ="validation" is recommended.

type Which method should be used to obscure the relationship between each covari-
ate / covariate group and the outcome? When type is "remove" (default), each
covariate / covariate group is removed one at a time from the task; the cross-
validated learner is refit to this modified task; and finally, predictions are ob-
tained from this refit. When type is "permute", each covariate / covariate group
is permuted (sampled without replacement) one at a time, and then predictions
are obtained from this modified data.

16 importance

importance_metric

Either "ratio" or "difference" (default). For each covariate / covariate group,
"ratio" returns the risk of the permuted/removed covariate / covariate group
divided by observed/original risk (i.e., the risk with all covariates as they existed
in the sample) and "difference" returns the difference between the risk with
the permuted/removed covariate / covariate group and the observed risk.

covariate_groups

Optional named list covariate groups which will invoke variable importance
evaluation at the group-level, by removing/permuting all covariates in the same
group together. If covariates in the task are not specified in the list of groups,
then those covariates will be added as additional single-covariate groups.

Value

A data.table of variable importance for each covariate.

Examples

Not run:
define ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

build relatively fast learner library (not recommended for real analysis)
lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
ranger_lrnr <- Lrnr_ranger$new()
lrnrs <- c(lasso_lrnr, glm_lrnr)
names(lrnrs) <- c("lasso", "glm")
lrnr_stack <- make_learner(Stack, lrnrs)

instantiate SL with default metalearner
sl <- Lrnr_sl$new(lrnr_stack)
sl_fit <- sl$train(task)

importance_result <- importance(sl_fit)
importance_result

importance with groups of covariates
groups <- list(

scores = c("apgar1", "apgar5"),
maternal = c("parity", "mage", "meducyrs")

)
importance_result_groups <- importance(sl_fit, covariate_groups = groups)
importance_result_groups

End(Not run)

importance_plot 17

importance_plot Variable Importance Plot

Description

Variable Importance Plot

Usage

importance_plot(x, nvar = min(30, nrow(x)))

Arguments

x The two-column data.table returned by importance, where the first column
is the covariate/groups and the second column is the importance score.

nvar The maximum number of predictors to be plotted. Defaults to the minimum
between 30 and the number of rows in x.

Value

A ggplot of variable importance.

Examples

Not run:
define ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

build relatively fast learner library (not recommended for real analysis)
lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
ranger_lrnr <- Lrnr_ranger$new()
lrnrs <- c(lasso_lrnr, glm_lrnr)
names(lrnrs) <- c("lasso", "glm")
lrnr_stack <- make_learner(Stack, lrnrs)

instantiate SL with default metalearner
sl <- Lrnr_sl$new(lrnr_stack)
sl_fit <- sl$train(task)
importance_result <- importance(sl_fit)
importance_plot(importance_result)

End(Not run)

18 loss_functions

inverse_sample Inverse CDF Sampling

Description

Inverse CDF Sampling

Usage

inverse_sample(n_samples, cdf = NULL, pdf = NULL)

Arguments

n_samples If true, remove entries after failure time for each observation.

cdf A list with x and y representing the cdf

pdf A list with x and y representing the pdf

loss_functions Loss Function Definitions

Description

Loss functions for use in evaluating learner fits.

Usage

loss_squared_error(pred, observed)

loss_loglik_true_cat(pred, observed)

loss_loglik_binomial(pred, observed)

loss_loglik_multinomial(pred, observed)

loss_squared_error_multivariate(pred, observed)

Arguments

pred A vector of predicted values

observed A vector of observed values

Value

A vector of loss values

Lrnr_arima 19

Note

Assumes predicted probabilities are "packed" into a single vector.

Lrnr_arima Univariate ARIMA Models

Description

This learner supports autoregressive integrated moving average model for univariate time-series.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

• order: An optional specification of the non-seasonal part of the ARIMA model; the three
integer components (p, d, q) are the AR order, the degree of differencing, and the MA order.
If order is specified, then arima will be called; otherwise, auto.arima will be used to fit the
"best" ARIMA model according to AIC (default), AIC or BIC. The information criterion to
be used in auto.arima model selection can be modified by specifying ic argument.

• num_screen = 5: The top n number of "most impotant" variables to retain.

• ...: Other parameters passed to arima or auto.arima function, depending on whether or not
order argument is provided.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_bartMachine, Lrnr_base, Lrnr_bayesglm,
Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

20 Lrnr_bartMachine

Examples

library(origami)
data(bsds)

folds <- make_folds(bsds,
fold_fun = folds_rolling_window, window_size = 500,
validation_size = 100, gap = 0, batch = 50

)

task <- sl3_Task$new(
data = bsds,
folds = folds,
covariates = c(
"weekday", "temp"

),
outcome = "cnt"

)

arima_lrnr <- make_learner(Lrnr_arima)

train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

arima_fit <- arima_lrnr$train(train_task)
arima_preds <- arima_fit$predict(valid_task)

Lrnr_bartMachine bartMachine: Bayesian Additive Regression Trees (BART)

Description

This learner implements Bayesian Additive Regression Trees via bartMachine (described in Kapel-
ner and Bleich (2016)) and the function bartMachine.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• ...: Parameters passed to bartMachine. See it’s documentation for details.

Lrnr_base 21

References

Kapelner A, Bleich J (2016). “bartMachine: Machine Learning with Bayesian Additive Regression
Trees.” Journal of Statistical Software, 70(4), 1–40. doi:10.18637/jss.v070.i04.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_base, Lrnr_bayesglm,
Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
set up ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

fit a bartMachine model and predict from it
bartMachine_learner <- make_learner(Lrnr_bartMachine)
bartMachine_fit <- bartMachine_learner$train(task)
preds <- bartMachine_fit$predict()

End(Not run)

Lrnr_base Base Class for all sl3 Learners

Description

Generally this base learner class should not be instantiated. Intended to be an abstract class, al-
though abstract classes are not explicitly supported by R6. All learners support the methods and
fields documented below. For more information on a particular learner, see its help file.

Usage

make_learner(learner_class, ...)

https://doi.org/10.18637/jss.v070.i04

22 Lrnr_base

Arguments

learner_class The learner class to instantiate.

... Parameters with which to instantiate the learner. See Parameters section below.

Format

R6Class object.

Value

Learner object with methods for training and prediction

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

User Methods

train(task) Trains learner to a task using delayed. Returns a fit object

• task: The task to use for training

base_train(task, trained_sublearners = NULL) Trains learner to a task. Returns a fit object

• task: The task to use for training
• trained_sublearners: Any sublearners previous trained. Almost always NULL

predict(task=NULL) Generates predictions using delayed. Returns a prediction vector or matrix.

• task: The task to use for prediction. If no task is provided, it will use the task used for
training.

base_predict(task=NULL) Generates predictions. Returns a prediction vector or matrix.

• task: The task to use for prediction. If no task is provided, it will use the task used for
training.

chain(task=NULL) Generates a chained task using delayed

• task: The task to use for chaining If no task is provided, it will use the task used for
training.

base_chain(task=NULL) Generates a chained task

• task: The task to use for chaining If no task is provided, it will use the task used for
training.

Lrnr_base 23

Fields

is_trained TRUE if this is a learner fit, not an untrained learner

fit_object The internal fit object

name The learner name

learner_uuid A unique identifier of this learner, but common to all fits of this learner

fit_uuid A unique identifier of this learner fit. NULL if this is an untrained learner

params A list of learner parameters, as specified on construction

training_task The task used for training. NULL if this is an untrained learner

training_outcome_type The outcome_type of the task used for training. NULL if this is an un-
trained learner

properties The properties supported by this learner

coefficients Fit coefficients, if this learner has coefficients. NULL otherwise, or if this is an
untrained learner

Internal Methods

These methods are primiarily for internal use only. They’re not recommended for public consump-
tion.

subset_covariates(task) Returns a task with covariates subsetted using the covariates pa-
rameter.

• task: The task to subset

get_outcome_type(task) Mediates between the task outcome_type and parameter outcome_type.
If a parameter outcome_type was specified, returns that. Otherwise, returns the task$outcome_type.

• task: The task for which to determine the outcome_type

train_sublearners(task) Trains sublearners to a task using delayed. Returns a delayed sub-
learner fit.

• task: The task to use for training

set_train(fit_object, training_task) Converts a learner to a learner fit.

• fit_object: The fit object generated by a call to private$.train

• training_task: The task used for training

assert_trained() Throws an error if this learner does not have a fit_object

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_bayesglm,
Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,

24 Lrnr_bayesglm

Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Lrnr_bayesglm Bayesian Generalized Linear Models

Description

This learner provides fitting procedures for bayesian generalized linear models (GLMs) from ar us-
ing bayesglm.fit. The GLMs fitted in this way can incorporate independent normal, t, or Cauchy
prior distribution for the coefficients.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• intercept = TRUE: A logical specifying whether an intercept term should be included in the
fitted null model.

• ...: Other parameters passed to bayesglm.fit. See it’s documentation for details.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Lrnr_bound 25

Examples

data(cpp_imputed)
covars <- c(

"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn"
)
outcome <- "haz"
task <- sl3_Task$new(cpp_imputed,

covariates = covars,
outcome = outcome

)
fit and predict from a bayesian GLM
bayesglm_lrnr <- make_learner(Lrnr_bayesglm)
bayesglm_fit <- bayesglm_lrnr$train(task)
bayesglm_preds <- bayesglm_fit$predict(task)

Lrnr_bound Bound Predictions

Description

This learner bounds predictions. Intended for use as part of Pipeline.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• bound: Either a vector of length two, with lower and upper bounds, or a vector of length 1
with a lower bound, and the upper will be set symmetrically as 1 - the lower bound. Both
bounds must be provided when the variable type of the task’s outcome is continuous.

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
lrnr_stack <- make_learner(Stack, lasso_lrnr, glm_lrnr)
lrnr_bound <- Lrnr_bound$new(c(-2, 2))
stack_bounded_preds <- Pipeline$new(lrnr_stack, lrnr_bound)
metalrnr_discrete_MSE <- Lrnr_cv_selector$new(loss_squared_error)
discrete_sl <- Lrnr_sl$new(

learners = stack_bounded_preds, metalearner = metalrnr_discrete_MSE
)
discrete_sl_fit <- discrete_sl$train(task)

26 Lrnr_caret

preds <- discrete_sl_fit$predict()
range(preds)

Lrnr_caret Caret (Classification and Regression) Training

Description

This learner uses the caret package’s train function to automatically tune a predictive model. It
does this by defining a grid of model-specific tuning parameters; fitting the model according to
each tuning parameter specification, to establish a set of models fits; calculating a resampling-based
performance measure each variation; and then selecting the model with the best performance.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• method: A string specifying which caret classification or regression model to use. Pos-
sible models can be found using names(caret::getModelInfo()). Information about a
model, including the parameters that are tuned, can be found using caret::modelLookup(),
e.g., caret::modelLookup("xgbLinear"). Consult the caret package’s documentation on
train for more details.

• metric = NULL: An optional string specifying the summary metric to be used to select the opti-
mal model. If not specified, it will be set to "RMSE" for continuous outcomes and "Accuracy"
for categorical and binary outcomes. Other options include "MAE", "Kappa", "Rsquared"
and "logLoss". Regression models are defined when metric is set as "RMSE", "logLoss",
"Rsquared", or "MAE". Classification models are defined when metric is set as "Accuracy"
or "Kappa". Custom performance metrics can also be used. Consult the caret package’s
train documentation for more details.

• trControl = list(method = "cv", number = 10): A list for specifying the arguments for
trainControl object. If not specified, it will consider "cv" with 10 folds as the resampling
method, instead of caret’s default resampling method, "boot". For a detailed description,
consult the caret package’s documentation for train and trainControl.

• factor_binary_outcome = TRUE: Logical indicating whether a binary outcome should be de-
fined as a factor instead of a numeric. This only needs to be modified to FALSE in the following
uncommon instance: when metric is specified by the user, metric defines a regression model,
and the task’s outcome is binary. Note that train could throw warnings/errors when regres-
sion models are considered for binary outcomes; this argument should only be modified by
advanced users in niche settings.

• ...: Other parameters passed to train and additional arguments defined in Lrnr_base, such
as params like formula.

Lrnr_cv 27

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
autotuned_RF_lrnr <- Lrnr_caret$new(method = "rf")
set.seed(693)
autotuned_RF_fit <- autotuned_RF_lrnr$train(task)
autotuned_RF_predictions <- autotuned_RF_fit$predict()

End(Not run)

Lrnr_cv Fit/Predict a learner with Cross Validation

Description

A wrapper around any learner that generates cross-validate predictions

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

learner The learner to wrap

folds=NULL An origami folds object. If NULL, folds from the task are used

full_fit=FALSE If TRUE, also fit the underlying learner on the full data. This can then be accessed
with predict_fold(task, fold_number="full")

28 Lrnr_cv_selector

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

library(origami)

load example data
data(cpp_imputed)
covars <- c(

"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn"
)
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)
glm_learner <- Lrnr_glm$new()
cv_glm <- Lrnr_cv$new(glm_learner, folds = make_folds(cpp_imputed, V = 10))

train cv learner
cv_glm_fit <- cv_glm$train(task)
preds <- cv_glm_fit$predict()

Lrnr_cv_selector Cross-Validated Selector

Description

This learner is the cross-validated (CV) selector, and it is intended for use as the metalearner
in Lrnr_sl. Lrnr_cv_selector selects the candidate with the best CV predictive performance
(i.e., lowest CV risk). Specifically, it aims to optimize the CV risk, and it is defined by a con-
strained weighted combination: the weights can either be zero or one, and they must sum to one.
Lrnr_cv_selector optimizes the CV predictive performance under these constraints by assigning
the candidate with the best CV predictive performance a weight of one and all others a weight of
zero. Thus, Lrnr_cv_selector and its predictions will be identical to the best-performing candi-
date learner and its predictions; this is why we say Lrnr_cv_selector "selects" the candidate with
the best CV predictive performance.

Lrnr_cv_selector 29

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• eval_function = loss_squared_error: A function that takes as input a vector of predicted
values as its first argument and a vector of observed outcome values as its second argument,
and then returns a vector of losses or a numeric risk. See loss_functions and risk_functions
for options.

• folds = NULL: Optional origami-structured cross-validation folds from the task for training
Lrnr_sl, e.g., task$folds. This argument is only required and utilized when eval_function
is not a loss function, since the risk has to be calculated on each validation set separately and
then averaged across them in order to estimate the cross-validated risk. This argument is
ignored when eval_function is a loss.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

hal_lrnr <- Lrnr_hal9001$new(
max_degree = 1, num_knots = c(20, 10), smoothness_orders = 0

)
lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
ranger_lrnr <- Lrnr_ranger$new()
lrnrs <- c(hal_lrnr, lasso_lrnr, glm_lrnr, ranger_lrnr)
names(lrnrs) <- c("hal", "lasso", "glm", "ranger")

30 Lrnr_dbarts

lrnr_stack <- make_learner(Stack, lrnrs)
metalrnr_discrete_MSE <- Lrnr_cv_selector$new(loss_squared_error)
discrete_sl <- Lrnr_sl$new(

learners = lrnr_stack, metalearner = metalrnr_discrete_MSE
)
discrete_sl_fit <- discrete_sl$train(task)
discrete_sl_fit$cv_risk(loss_squared_error)

End(Not run)

Lrnr_dbarts Discrete Bayesian Additive Regression Tree sampler

Description

This learner implements BART algorithm in C++, using the dbarts package. BART is a Bayesian
sum-of-trees model in which each tree is constrained by a prior to be a weak learner.

Format

R6Class object.

Value

Learner object with methods for training and prediction. See Lrnr_base for documentation on
learners.

Parameters

x.test Explanatory variables for test (out of sample) data. bart will generate draws of f(x) for
each x which is a row of x.test.

sigest For continuous response models, an estimate of the error variance, σ2, used to calibrate an
inverse-chi-squared prior used on that parameter. If not supplied, the least-squares estimate is
derived instead. See sigquant for more information. Not applicable when y is binary.

sigdf Degrees of freedom for error variance prior. Not applicable when y is binary.

sigquant The quantile of the error variance prior that the rough estimate (sigest) is placed at.
The closer the quantile is to 1, the more aggresive the fit will be as you are putting more prior
weight on error standard deviations (σ) less than the rough estimate. Not applicable when y is
binary.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x) is away from ±0.5.
The response (y.train) is internally scaled to range from −0.5 to 0.5. For binary y, k is the
number of prior standard deviations f(x) is away from ±3. In both cases, the bigger k is, the
more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

Lrnr_dbarts 31

binaryOffset sed for binary y. When present, the model is P (Y = 1 | x) = Φ(f(x) +
binaryOffset), allowing fits with probabilities shrunk towards values other than 0.5.

weights An optional vector of weights to be used in the fitting process. When present, BART fits
a model with observations y | x ∼ N(f(x), σ2/w), where f(x) is the unknown function.

ntree The number of trees in the sum-of-trees formulation.

ndpost The number of posterior draws after burn in, ndpost / keepevery will actually be re-
turned.

nskip Number of MCMC iterations to be treated as burn in.

printevery As the MCMC runs, a message is printed every printevery draws.

keepevery Every keepevery draw is kept to be returned to the user. Useful for “thinning” samples.

keeptrainfits If TRUE the draws of f(x) for x corresponding to the rows of x.train are returned.

usequants When TRUE, determine tree decision rules using estimated quantiles derived from the
x.train variables. When FALSE, splits are determined using values equally spaced across the
range of a variable. See details for more information.

numcut The maximum number of possible values used in decision rules (see usequants, details).
If a single number, it is recycled for all variables; otherwise must be a vector of length equal
to ncol(x.train). Fewer rules may be used if a covariate lacks enough unique values.

printcutoffs The number of cutoff rules to printed to screen before the MCMC is run. Given a
single integer, the same value will be used for all variables. If 0, nothing is printed.

verbose Logical; if FALSE supress printing.

nchain Integer specifying how many independent tree sets and fits should be calculated.

nthread Integer specifying how many threads to use. Depending on the CPU architecture, using
more than the number of chains can degrade performance for small/medium data sets. As such
some calculations may be executed single threaded regardless.

combinechains Logical; if TRUE, samples will be returned in arrays of dimensions equal to nchain
× ndpost × number of observations.

keeptrees Logical; must be TRUE in order to use predict with the result of a bart fit.

keepcall Logical; if FALSE, returned object will have call set to call("NULL"), otherwise the
call used to instantiate BART.

serializeable Logical; if TRUE, loads the trees into R memory so the fit object can be saved and
loaded. See the section on "Saving" in bart NB: This is not currently working

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

32 Lrnr_define_interactions

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

set.seed(123)

load example data
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")

create sl3 task
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
dbart_learner <- make_learner(Lrnr_dbarts, ndpost = 200)

train dbart learner and make predictions
dbart_fit <- dbart_learner$train(task)
preds <- dbart_fit$predict()

Lrnr_define_interactions

Define interactions terms

Description

This learner adds interactions to its chained task. Intended for use in a Pipeline, defining a coupling
of the interactions with the learner.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Lrnr_density_discretize 33

Parameters

• interactions: A list whose elements are a character vector of covariates from which to
create interaction terms.

• warn_on_existing: If TRUE, produce a warning if there is already a column with a name
matching this given interaction term.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn")
outcome <- "haz"
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)
interactions <- list(c("apgar1", "parity"), c("apgar5", "parity"))
lrnr_interact <- Lrnr_define_interactions$new(

list(c("apgar1", "parity"), c("apgar5", "parity"))
)
lrnr_glm <- Lrnr_glm$new()
interaction_pipeline_glm <- make_learner(Pipeline, lrnr_interact, lrnr_glm)
fit <- interaction_pipeline_glm$train(task)

Lrnr_density_discretize

Density from Classification

Description

This learner discretizes a continuous density and then fits a categorical learner

Format

R6Class object.

34 Lrnr_density_discretize

Value

Lrnr_base object with methods for training and prediction

Parameters

categorical_learner The learner to wrap.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

load example data
data(cpp_imputed)

create sl3 task
task <- sl3_Task$new(

cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"),
outcome = "haz"

)

train density discretize learner and make predictions
lrnr_discretize <- Lrnr_density_discretize$new(

categorical_learner = Lrnr_glmnet$new()
)

Lrnr_density_hse 35

lrnr_discretize_fit <- lrnr_discretize$train(task)
lrnr_discretize_pred <- lrnr_discretize_fit$predict()

Lrnr_density_hse Density Estimation With Mean Model and Homoscedastic Errors

Description

This learner assumes a mean model with homoscedastic errors: Y ~ E(Y|W) + epsilon. E(Y|W) is
fit using any mean learner, and then the errors are fit with kernel density estimation.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

binomial_learner The learner to wrap.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

36 Lrnr_density_semiparametric

Examples

load example data
data(cpp_imputed)

create sl3 task
task <- sl3_Task$new(

cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"),
outcome = "haz"

)

train density hse learner and make predictions
lrnr_density_hse <- Lrnr_density_hse$new(mean_learner = Lrnr_glm$new())
fit_density_hse <- lrnr_density_hse$train(task)
preds_density_hse <- fit_density_hse$predict()

Lrnr_density_semiparametric

Density Estimation With Mean Model and Homoscedastic Errors

Description

This learner assumes a mean model with homoscedastic errors: Y ~ E(Y|W) + epsilon. E(Y|W) is
fit using any mean learner, and then the errors are fit with kernel density estimation.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

binomial_learner The learner to wrap.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

Lrnr_earth 37

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga, Lrnr_gam,
Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

load example data
data(cpp_imputed)

create sl3 task
task <- sl3_Task$new(

cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"),
outcome = "haz"

)

train density hse learner and make predictions
lrnr_density_semi <- Lrnr_density_semiparametric$new(

mean_learner = Lrnr_glm$new()
)
lrnr_density_semi_fit <- lrnr_density_semi$train(task)
lrnr_density_semi_pred <- lrnr_density_semi_fit$predict()

Lrnr_earth Earth: Multivariate Adaptive Regression Splines

Description

This learner provides fitting procedures for building regression models thru the spline regression
techniques described in Friedman (1991) and Friedman (1993), via earth and the function earth.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

38 Lrnr_earth

Parameters

• degree: A numeric specifying the maximum degree of interactions to be used in the model.
This defaults to 2, specifying up through one-way interaction terms. Note that this differs
from the default of earth.

• penalty: Generalized Cross Validation (GCV) penalty per knot. Defaults to 3 as per the
recommendation for degree > 1 in the documentation of earth. Special values (for use by
knowledgeable users): The value 0 penalizes only terms, not knots. The value -1 translates to
no penalty.

• pmethod: Pruning method, defaulting to "backward". Other options include "none", "exhaustive",
"forward", "seqrep", "cv".

• nfold: Number of cross-validation folds. The default is 0, for no cross-validation.

• ncross: Only applies if nfold > 1, indicating the number of cross-validation rounds. Each
cross-validation has nfold folds. Defaults to 1.

• minspan: Minimum number of observations between knots.

• endspan: Minimum number of observations before the first and after the final knot.

• ...: Other parameters passed to earth. See its documentation for details.

References

Friedman JH (1991). “Multivariate adaptive regression splines.” The Annals of Statistics, 1–67.

Friedman JH (1993). “Fast MARS.” Stanford University. https://doi.org/10.1214/aos/1176347963.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_expSmooth,
Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet,
Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covars <- c(

"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn"
)
outcome <- "haz"
task <- sl3_Task$new(cpp_imputed,

covariates = covars,

https://doi.org/10.1214/aos/1176347963

Lrnr_expSmooth 39

outcome = outcome
)
fit and predict from a MARS model
earth_lrnr <- make_learner(Lrnr_earth)
earth_fit <- earth_lrnr$train(task)
earth_preds <- earth_fit$predict(task)

Lrnr_expSmooth Exponential Smoothing state space model

Description

This learner supports exponential smoothing models using ets.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

• model="ZZZ": Three-character string identifying method. In all cases, "N"=none, "A"=additive,
"M"=multiplicative, and "Z"=automatically selected. The first letter denotes the error type,
second letter denotes the trend type, third letter denotes the season type. For example, "ANN"
is simple exponential smoothing with additive errors, "MAM" is multiplicative Holt-Winters’
methods with multiplicative errors, etc.

• damped=NULL: If TRUE, use a damped trend (either additive or multiplicative). If NULL, both
damped and non-damped trends will be tried and the best model (according to the information
criterion ic) returned.

• alpha=NULL: Value of alpha. If NULL, it is estimated.

• beta=NULL: Value of beta. If NULL, it is estimated.

• gamma=NULL: Value of gamma. If NULL, it is estimated.

• phi=NULL: Value of phi. If NULL, it is estimated.

• lambda=NULL: Box-Cox transformation parameter. Ignored if NULL. When lambda is specified,
additive.only is set to TRUE.

• additive.only=FALSE: If TRUE, will only consider additive models.

• biasadj=FALSE: Use adjusted back-transformed mean for Box-Cox transformations.

• lower=c(rep(1e-04, 3), 0.8): Lower bounds for the parameters (alpha, beta, gamma, phi).

• upper=c(rep(0.9999,3), 0.98): Upper bounds for the parameters (alpha, beta, gamma,
phi)

• opt.crit="lik": Optimization criterion.

40 Lrnr_expSmooth

• nmse=3: Number of steps for average multistep MSE (1 <= nmse <= 30).

• bounds="both"" Type of parameter space to impose: "usual" indicates all parameters must
lie between specified lower and upper bounds; "admissible" indicates parameters must lie in
the admissible space; "both" (default) takes the intersection of these regions.

• ic="aic": Information criterion to be used in model selection.

• restrict=TRUE: If TRUE, models with infinite variance will not be allowed.

• allow.multiplicative.trend=FALSE: If TRUE, models with multiplicative trend are al-
lowed when searching for a model.

• use.initial.values=FALSE: If TRUE and model is of class "ets", then the initial values in
the model are also not re-estimated.

• n.ahead: The forecast horizon. If not specified, returns forecast of size task$X.

• freq=1: the number of observations per unit of time.

• ...: Other parameters passed to ets.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet,
Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

library(origami)
data(bsds)

folds <- make_folds(bsds,
fold_fun = folds_rolling_window, window_size = 500,
validation_size = 100, gap = 0, batch = 50

)

task <- sl3_Task$new(
data = bsds,
folds = folds,
covariates = c(
"weekday", "temp"

),
outcome = "cnt"

)

Lrnr_ga 41

expSmooth_lrnr <- make_learner(Lrnr_expSmooth)

train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

expSmooth_fit <- expSmooth_lrnr$train(train_task)
expSmooth_preds <- expSmooth_fit$predict(valid_task)

Lrnr_ga Nonlinear Optimization via Genetic Algorithm (GA)

Description

This metalearner provides fitting procedures for any pairing of loss or risk function and metalearner
function, subject to constraints. The optimization problem is solved by making use of the ga func-
tion in the GA R package. For further consult the documentation of this package.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• learner_function = metalearner_linear: A function(alpha, X) that takes a vector of co-
variates and a matrix of data and combines them into a vector of predictions. See metalearners
for options.

• eval_function = loss_squared_error: A function(pred, truth) that takes prediction and
truth vectors and returns a loss vector or a risk scalar. See loss_functions and risk_functions
for options and more detail.

• make_sparse = TRUE: If TRUE, zeros out small alpha values.

• convex_combination = TRUE: If TRUE, constrain alpha to sum to 1.

• maxiter = 100: The maximum number of iterations to run before the GA search is halted.

• run = 10: The number of consecutive generations without any improvement in the best fitness
value before the GA is stopped.

• optim = TRUE: A logical determining whether or not a local search using general-purpose
optimization algorithms should be used. Argument optimArgs of ga provides further details
and finer control.

• ...: Additional arguments to ga and/or Lrnr_base.

42 Lrnr_gam

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

define ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

build relatively fast learner library (not recommended for real analysis)
lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
lrnrs <- c(lasso_lrnr, glm_lrnr)
names(lrnrs) <- c("lasso", "glm")
lrnr_stack <- make_learner(Stack, lrnrs)

instantiate SL with GA metalearner
ga <- Lrnr_ga$new(maxiter=10)
sl <- Lrnr_sl$new(lrnr_stack, ga)
sl_fit <- sl$train(task)

Lrnr_gam GAM: Generalized Additive Models

Description

This learner provides fitting procedures for generalized additive models, using the routines from
mgcv through a call to the function gam. The mgcv package and the use of GAMs are described
thoroughly (with examples) in Wood (2017), while Hastie and Tibshirani (1990) also provided an
earlier quite thorough look at GAMs.

Format

An R6Class object inheriting from Lrnr_base.

Lrnr_gam 43

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• formula: An optional argument specifying the formula of GAM. Input type can be formula
or string, or a list of them. If not specified, continuous covariates will be smoothened with the
smooth terms represented using "penalized thin plate regression splines". For a more detailed
description, please consult the documentation for gam.

• family: An optional argument specifying the family of the GAM. See family and family.mgcv
for a list of available family functions. If left unspecified, it will be inferred depending on the
detected type of the outcome. For now, GAM supports binomial and gaussian outcome types,
if formula is unspecified. For a more detailed description of this argument, please consult the
documentation of gam.

• method: An optional argument specifying the method for smoothing parameter selection. The
default is global cross-validation (GCV). For more detaileds on this argument, consult the
documentation of gam.

• ...: Other parameters passed to gam. See its documentation for details.

References

Hastie TJ, Tibshirani RJ (1990). Generalized additive models, volume 43. CRC press.

Wood SN (2017). Generalized additive models: an introduction with R. CRC press.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
create task for prediction
cpp_task <- sl3_Task$new(

data = cpp_imputed,
covariates = c("bmi", "parity", "mage", "sexn"),

44 Lrnr_gbm

outcome = "haz"
)
initialization, training, and prediction with the defaults
gam_lrnr <- Lrnr_gam$new()
gam_fit <- gam_lrnr$train(cpp_task)
gam_preds <- gam_fit$predict()

Lrnr_gbm GBM: Generalized Boosted Regression Models

Description

This learner provides fitting procedures for generalized boosted regression trees, using the routines
from gbm, through a call to the function gbm.fit. Though a variety of gradient boosting strategies
have seen popularity in machine learning, a few of the early methodological descriptions were given
by Friedman (2001) and Friedman (2002).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• n.trees: An integer specifying the total number of trees to fit. This is equivalent to the
number of iterations and the number of basis functions in the additive expansion. The default
is 10000.

• interaction.depth: An integer specifying the maximum depth of each tree (i.e., the highest
level of allowed variable interactions). A value of 1 implies an additive model, while a value
of 2 implies a model with up to 2-way interactions, etc. The default is 2.

• shrinkage: A shrinkage parameter applied to each tree in the expansion. Also known as the
learning rate or step-size reduction; values of 0.001 to 0.1 have been found to usually work,
but a smaller learning rate typically requires more trees. The default is 0.001.

• ...: Other parameters passed to gbm. See its documentation for details.

References

Friedman JH (2001). “Greedy function approximation: a gradient boosting machine.” Annals of
statistics, 1189–1232.

Friedman JH (2002). “Stochastic gradient boosting.” Computational statistics & data analysis,
38(4), 367–378.

Lrnr_glm 45

See Also

Lrnr_xgboost for the extreme gradient boosted tree models from the Xgboost framework (via the
xgboost package) and Lrnr_lightgbm for the faster and more efficient gradient boosted trees from
the LightGBM framework (via the lightgbm package).

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
create task for prediction
cpp_task <- sl3_Task$new(

data = cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "sexn"),
outcome = "haz"

)

initialization, training, and prediction with the defaults
gbm_lrnr <- Lrnr_gbm$new()
gbm_fit <- gbm_lrnr$train(cpp_task)
gbm_preds <- gbm_fit$predict()

Lrnr_glm Generalized Linear Models

Description

This learner provides fitting procedures for generalized linear models using the stats package
glm.fit function.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

46 Lrnr_glmnet

Parameters

• intercept = TRUE: Should an intercept be included in the model?

• ...: Other parameters passed to glm or glm.fit.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

simple, main-terms GLM
lrnr_glm <- make_learner(Lrnr_glm)
glm_fit <- lrnr_glm$train(task)
glm_preds <- glm_fit$predict()

We can include interaction terms by 'piping' them into this learner.
Note that both main terms and the specified interactions will be included
in the regression model.
interaction <- list(c("apgar1", "parity"))
lrnr_interaction <- Lrnr_define_interactions$new(interactions = interaction)
lrnr_glm_w_interaction <- make_learner(Pipeline, lrnr_interaction, lrnr_glm)
fit <- lrnr_glm_w_interaction$train(task)
coefs <- coef(fit$learner_fits$Lrnr_glm_TRUE)

Lrnr_glmnet GLMs with Elastic Net Regularization

Description

This learner provides fitting procedures for elastic net models, including both lasso (L1) and ridge
(L2) penalized regression, using the glmnet package. The function cv.glmnet is used to select an
appropriate value of the regularization parameter lambda. For details on these regularized regression
models and glmnet, consider consulting Friedman et al. (2010)).

Lrnr_glmnet 47

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• lambda = NULL: An optional vector of lambda values to compare.

• type.measure = "deviance": The loss to use when selecting lambda. Options documented
in cv.glmnet.

• nfolds = 10: Number of k-fold/V-fold cross-validation folds for cv.glmnet to consider when
selecting the optimal lambda with cross-validation. Smallest nfolds value allowed by glmnet
is 3. For further details, consult the documentation of cv.glmnet.

• alpha = 1: The elastic net parameter: alpha = 0 is Ridge (L2-penalized) regression, while
alpha = 1 specifies Lasso (L1-penalized) regression. Values in the closed unit interval specify
a weighted combination of the two penalties. For further details, consult the documentation
of glmnet.

• nlambda = 100: The number of lambda values to fit. Comparing fewer values will speed
up computation, but may hurt the statistical performance. For further details, consult the
documentation of cv.glmnet.

• use_min = TRUE: If TRUE, the smallest value of the lambda regularization parameter is used
for prediction (i.e., lambda = cv_fit$lambda.min); otherwise, a larger value is used (i.e.,
lambda = cv_fit$lambda.1se). The distinction between the two variants is clarified in the
documentation of cv.glmnet.

• nfolds = 10: Number of folds (default is 10). Smallest value allowable by glmnet is 3.

• ...: Other parameters passed to cv.glmnet and glmnet, and additional arguments defined in
Lrnr_base, such as params like formula.

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear models via
coordinate descent.” Journal of statistical software, 33(1), 1.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,

48 Lrnr_glmtree

Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(mtcars)
mtcars_task <- sl3_Task$new(

data = mtcars,
covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
"gear", "carb"

),
outcome = "mpg"

)
simple prediction with lasso penalty
lasso_lrnr <- Lrnr_glmnet$new()
lasso_fit <- lasso_lrnr$train(mtcars_task)
lasso_preds <- lasso_fit$predict()

simple prediction with ridge penalty
ridge_lrnr <- Lrnr_glmnet$new(alpha = 0)
ridge_fit <- ridge_lrnr$train(mtcars_task)
ridge_preds <- ridge_fit$predict()

Lrnr_glmtree Generalized Linear Model Trees

Description

This learner uses glmtree from partykit to fit recursive partitioning and regression trees in a gen-
eralized linear model.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

• formula: An optional object of class formula (or one that can be coerced to that class), which
a symbolic description of the generalized linear model to be fit. If not specified a main terms
regression model will be supplied, with each covariate included as a term. Please consult
glmtree documentation for more information on its use of formula, and for a description on
formula syntax consult the details of the glm documentation.

• ...: Other parameters passed to mob_control or glmtree that are not already specified in
the sl3_Task. See its documentation for details.

Lrnr_glm_fast 49

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
create task for prediction
cpp_task <- sl3_Task$new(

data = cpp_imputed,
covariates = c("bmi", "parity", "mage", "sexn"),
outcome = "haz"

)
initialization, training, and prediction with the defaults
glmtree_lrnr <- Lrnr_glmtree$new()
glmtree_fit <- glmtree_lrnr$train(cpp_task)
glmtree_preds <- glmtree_fit$predict()

Lrnr_glm_fast Computationally Efficient Generalized Linear Model (GLM) Fitting

Description

This learner provides faster procedures for fitting linear and generalized linear models than Lrnr_glm
with a minimal memory footprint. This learner uses the internal fitting function provided by
speedglm package, speedglm.wfit. See Enea (2009) for more detail. The glm.fit function is
used as a fallback, if speedglm.wfit fails.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

50 Lrnr_glm_semiparametric

Parameters

• intercept = TRUE: Should an intercept be included in the model?

• method = "Cholesky": The method to check for singularity.

• ...: Other parameters to be passed to speedglm.wfit.

References

Enea M (2009). “Fitting linear models and generalized linear models with large data sets in R.”
Statistical Methods for the Analysis of Large Datasets: book of short papers, 411–414.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_semiparametric, Lrnr_glmnet,
Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

simple, main-terms GLM
lrnr_glm_fast <- Lrnr_glm_fast$new(method = "eigen")
glm_fast_fit <- lrnr_glm_fast$train(task)
glm_fast_preds <- glm_fast_fit$predict()

Lrnr_glm_semiparametric

Semiparametric Generalized Linear Models

Description

This learner provides fitting procedures for semiparametric generalized linear models using a speci-
fied baseline learner and glm.fit. Models of the form linkfun(E[Y|A,W]) = linkfun(E[Y|A=0,W])
+ A * f(W) are supported, where A is a binary or continuous interaction variable, W are all of the
covariates in the task excluding the interaction variable, and f(W) is a user-specified parametric
function of the non-interaction-variable covariates (e.g., f(W) = model.matrix(formula_sp, W)).

Lrnr_glm_semiparametric 51

The baseline function E[Y|A=0,W] is fit using a user-specified learner, possibly pooled over values
of interaction variable A, and then projected onto the semiparametric model.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• formula_parametric = NULL: A formula object specifying the parametric function of the
non-interaction-variable covariates.

• lrnr_baseline: A baseline learner for estimation of the nonparametric component. This can
be pooled or unpooled by specifying return_matrix_predictions.

• interaction_variable = NULL: An interaction variable name present in the task’s data that
will be used to multiply by the design matrix generated by formula_sp. If NULL (default) then
the interaction variable is treated identically 1. When this learner is used for estimation of the
outcome regression in an effect estimation procedure (e.g., when using sl3 within package
tmle3), it is recommended that interaction_variable be set as the name of the treatment
variable.

• family = NULL: A family object whose link function specifies the type of semiparametric
model. For partially-linear least-squares regression, partially-linear logistic regression, and
partially-linear log-linear regression family should be set to guassian(), binomial(), and
poisson(), respectively.

• append_interaction_matrix = TRUE: Whether lrnr_baseline should be fit on cbind(task$X,A*V),
where A is the interaction_variable and V is the design matrix obtained from formula_sp.
Note that if TRUE (default) the resulting estimator will be projected onto the semiparametric
model using glm.fit. If FALSE and interaction_variable is binary, the semiparametric
model is learned by stratifying on interaction_variable; Specifically, lrnr_baseline is
used to estimate E[Y|A=0,W] by subsetting to only observations with A = 0, i.e., subsetting to
only observations with interaction_variable = 0, and where W are the other covariates in
the task that are not the interaction_variable. In the binary interaction_variable case,
setting append_interaction_matrix = TRUE allows one to pool the learning across treatment
arms and can enhance performance of additive models.

• return_matrix_predictions = FALSE: Whether to return a matrix output with three columns
being E[Y|A=0,W], E[Y|A=1,W], E[Y|A,W] in the learner’s fit_object, where A is the interaction_variable
and W are the other covariates in the task that are not the interaction_variable. Only used
if the interaction_variable is binary.

• ...: Any additional parameters that can be considered by Lrnr_base.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,

52 Lrnr_glm_semiparametric

Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
simulate some data
set.seed(459)
n <- 200
W <- runif(n, -1, 1)
A <- rbinom(n, 1, plogis(W))
Y_continuous <- rnorm(n, mean = A + W, sd = 0.3)
Y_binary <- rbinom(n, 1, plogis(A + W))
Y_count <- rpois(n, exp(A + W))
data <- data.table::data.table(W, A, Y_continuous, Y_binary, Y_count)

Make tasks
task_continuous <- sl3_Task$new(

data,
covariates = c("A", "W"), outcome = "Y_continuous"

)
task_binary <- sl3_Task$new(

data,
covariates = c("A", "W"), outcome = "Y_binary"

)
task_count <- sl3_Task$new(

data,
covariates = c("A", "W"), outcome = "Y_count",
outcome_type = "continuous"

)

formula_sp <- ~ 1 + W

fit partially-linear regression with append_interaction_matrix = TRUE
set.seed(100)
lrnr_glm_sp_gaussian <- Lrnr_glm_semiparametric$new(

formula_sp = formula_sp, family = gaussian(),
lrnr_baseline = Lrnr_glm$new(),
interaction_variable = "A", append_interaction_matrix = TRUE

)
lrnr_glm_sp_gaussian <- lrnr_glm_sp_gaussian$train(task_continuous)
preds <- lrnr_glm_sp_gaussian$predict(task_continuous)
beta <- lrnr_glm_sp_gaussianfit_objectcoefficients
in this case, since append_interaction_matrix = TRUE, it is equivalent to:

Lrnr_glm_semiparametric 53

V <- model.matrix(formula_sp, task_continuous$data)
X <- cbind(task_continuous$data[["W"]], task_continuous$data[["A"]] * V)
X0 <- cbind(task_continuous$data[["W"]], 0 * V)
colnames(X) <- c("W", "A", "A*W")
Y <- task_continuous$Y
set.seed(100)
beta_equiv <- coef(glm(X, Y, family = "gaussian"))[c(3, 4)]
actually, the glm fit is projected onto the semiparametric model
with glm.fit, no effect in this case
print(beta - beta_equiv)
fit partially-linear regression w append_interaction_matrix = FALSE`
set.seed(100)
lrnr_glm_sp_gaussian <- Lrnr_glm_semiparametric$new(

formula_sp = formula_sp, family = gaussian(),
lrnr_baseline = Lrnr_glm$new(family = gaussian()),
interaction_variable = "A",
append_interaction_matrix = FALSE

)
lrnr_glm_sp_gaussian <- lrnr_glm_sp_gaussian$train(task_continuous)
preds <- lrnr_glm_sp_gaussian$predict(task_continuous)
beta <- lrnr_glm_sp_gaussianfit_objectcoefficients
in this case, since append_interaction_matrix = FALSE, it is equivalent to
the following
cntrls <- task_continuous$data[["A"]] == 0 # subset to control arm
V <- model.matrix(formula_sp, task_continuous$data)
X <- cbind(rep(1, n), task_continuous$data[["W"]])
Y <- task_continuous$Y
set.seed(100)
beta_Y0W <- lrnr_glm_sp_gaussianfit_objectlrnr_baselinefit_objectcoefficients
subset to control arm
beta_Y0W_equiv <- coef(

glm.fit(X[cntrls, , drop = F], Y[cntrls], family = gaussian())
)
EY0 <- X %*% beta_Y0W
beta_equiv <- coef(glm.fit(A * V, Y, offset = EY0, family = gaussian()))
print(beta_Y0W - beta_Y0W_equiv)
print(beta - beta_equiv)

fit partially-linear logistic regression
lrnr_glm_sp_binomial <- Lrnr_glm_semiparametric$new(

formula_sp = formula_sp, family = binomial(),
lrnr_baseline = Lrnr_glm$new(), interaction_variable = "A",
append_interaction_matrix = TRUE

)
lrnr_glm_sp_binomial <- lrnr_glm_sp_binomial$train(task_binary)
preds <- lrnr_glm_sp_binomial$predict(task_binary)
beta <- lrnr_glm_sp_binomialfit_objectcoefficients

fit partially-linear log-link (relative-risk) regression
Lrnr_glm$new(family = "poisson") setting requires that lrnr_baseline
predicts nonnegative values. It is recommended to use poisson
regression-based learners.
lrnr_glm_sp_poisson <- Lrnr_glm_semiparametric$new(

54 Lrnr_grf

formula_sp = formula_sp, family = poisson(),
lrnr_baseline = Lrnr_glm$new(family = "poisson"),
interaction_variable = "A",
append_interaction_matrix = TRUE

)
lrnr_glm_sp_poisson <- lrnr_glm_sp_poisson$train(task_count)
preds <- lrnr_glm_sp_poisson$predict(task_count)
beta <- lrnr_glm_sp_poissonfit_objectcoefficients

End(Not run)

Lrnr_grf Generalized Random Forests Learner

Description

This learner implements Generalized Random Forests, using the grf package. This is a plug-
gable package for forest-based statistical estimation and inference. GRF currently provides non-
parametric methods for least-squares regression, quantile regression, and treatment effect estima-
tion (optionally using instrumental variables). Current implementation trains a regression forest that
can be used to estimate quantiles of the conditional distribution of (Y|X=x).

Format

R6Class object.

Value

Learner object with methods for training and prediction. See Lrnr_base for documentation on
learners.

Parameters

num.trees = 2000 Number of trees grown in the forest. NOTE: Getting accurate confidence inter-
vals generally requires more trees than getting accurate predictions.

quantiles = c(0.1, 0.5, 0.9) Vector of quantiles used to calibrate the forest.

regression.splitting = FALSE Whether to use regression splits when growing trees instead of
specialized splits based on the quantiles (the default). Setting this flag to TRUE corresponds to
the approach to quantile forests from Meinshausen (2006).

clusters = NULL Vector of integers or factors specifying which cluster each observation corre-
sponds to.

equalize.cluster.weights = FALSE If FALSE, each unit is given the same weight (so that bigger
clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn cluster: If
the smallest cluster has K units, then when we sample a cluster during training, we only give
a random K elements of the cluster to the tree-growing procedure. When estimating average
treatment effects, each observation is given weight 1/cluster size, so that the total weight of
each cluster is the same.

Lrnr_grf 55

sample.fraction = 0.5 Fraction of the data used to build each tree. NOTE: If honesty = TRUE,
these subsamples will further be cut by a factor of honesty.fraction..

mtry = NULL Number of variables tried for each split. By default, this is set based on the dimen-
sionality of the predictors.

min.node.size = 5 A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the randomForest package.

honesty = TRUE Whether or not honest splitting (i.e., sub-sample splitting) should be used.

alpha = 0.05 A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty = 0 A tuning parameter that controls how harshly imbalanced splits are pe-
nalized.

num.threads = 1 Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

quantiles_pred Vector of quantiles used to predict. This can be different than the vector of
quantiles used for training.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

load example data
data(cpp_imputed)

56 Lrnr_grfcate

create sl3 task
task <- sl3_Task$new(

cpp_imputed,
covariates = c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs"),
outcome = "haz"

)

train grf learner and make predictions
lrnr_grf <- Lrnr_grf$new(seed = 123)
lrnr_grf_fit <- lrnr_grf$train(task)
lrnr_grf_pred <- lrnr_grf_fit$predict()

Lrnr_grfcate Generalized Random Forests for Conditional Average Treatment Ef-
fects

Description

This learner implements the so-called "Causal Forests" estimator of the conditional average treat-
ment effect (CATE) using the grf package function causal_forest. This learner is intended for use
in the tmle3mopttx package, where it is necessary to fit the CATE, and then predict CATE values
from new covariate data. As such, this learner requires a treatment/exposure node to be specified
(A).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• A: Column name in the sl3_Task’s covariates that indicates the treatment/exposure of in-
terest. The treatment assignment must be a binary or real numeric vector with no NAs.

• ...: Other parameters passed to causal_forest. See its documentation for details.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,

Lrnr_gru_keras 57

Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(mtcars)
mtcars_task <- sl3_Task$new(

data = mtcars,
covariates = c("cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am"),
outcome = "mpg"

)
simple prediction with lasso penalty
grfcate_lrnr <- Lrnr_grfcate$new(A = "vs")
grfcate_fit <- grfcate_lrnr$train(mtcars_task)
grf_cate_predictions <- grfcate_fit$predict()

Lrnr_gru_keras Recurrent Neural Network with Gated Recurrent Unit (GRU) with
Keras

Description

This learner supports Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRU). This
learner leverages the same principles as LSTM networks but is more streamlined and thus cheaper
to run, at the expense of some loss in representational power. This learner uses the keras package.
Note that all preprocessing, such as differencing and seasonal effects for time series, should be
addressed before using this learner. Desired lags of the time series should be added as predictors
before using the learner.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• batch_size: How many times should the training data be used to train the neural network?

• units: Positive integer, dimensionality of the output space.

• dropout: Float between 0 and 1. Fraction of the input units to drop.

• recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear
transformation of the recurrent state.

58 Lrnr_gru_keras

• activation: Activation function to use. If you pass NULL, no activation is applied (e.g.,
"linear" activation: a(x) = x).

• recurrent_activation: Activation function to use for the recurrent step.

• recurrent_out: Activation function to use for the output step.

• epochs: Number of epochs to train the model.

• lr: Learning rate.

• layers: How many LSTM layers. Only allows for 1 or 2.

• callbacks: List of callbacks, which is a set of functions to be applied at given stages of the
training procedure. Default callback function callback_early_stopping stops training if
the validation loss does not improve across patience number of epochs.

• ...: Other parameters passed to keras.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
library(origami)
data(bsds)

make folds appropriate for time-series cross-validation
folds <- make_folds(bsds,

fold_fun = folds_rolling_window, window_size = 500,
validation_size = 100, gap = 0, batch = 50

)

build task by passing in external folds structure
task <- sl3_Task$new(

data = bsds,
folds = folds,
covariates = c(
"weekday", "temp"

),
outcome = "cnt"

)

Lrnr_h2o_grid 59

create tasks for taining and validation (simplifed example)
train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

instantiate learner, then fit and predict (simplifed example)
gru_lrnr <- Lrnr_gru_keras$new(batch_size = 1, epochs = 200)
gru_fit <- gru_lrnr$train(train_task)
gru_preds <- gru_fit$predict(valid_task)

End(Not run)

Lrnr_h2o_grid Grid Search Models with h2o

Description

Lrnr_h2o_grid - This learner provides facilities for fitting various types of models with support for
grid search over the hyperparameter space of such models, using an interface to the H2O platform.
For details on the procedures available and any limitations, consult the documentation of the h2o
package.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

algorithm An h2o ML algorithm. For a list, please see https://docs.h2o.ai/h2o/latest-stable/
h2o-docs/data-science.html#.

seed=1 RNG see to use when fitting.

distribution=NULL Specifies the loss function for GBM, Deep Learning, and XGBoost.

intercept=TRUE If TRUE, and intercept term is included.

standardize=TRUE Standardize covariates to have mean = 0 and SD = 1.

lambda=0 Lasso Parameter.

max_iterations=100 Maximum number of iterations.

ignore_const_columns=FALSE If TRUE, drop constant covariate columns

missing_values_handling="Skip" How to handle missing values.

... Other arguments passed to the h2o algorithm of choice. See https://docs.h2o.ai/h2o/
latest-stable/h2o-docs/parameters.html for a list.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html#
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html#
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/parameters.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/parameters.html

60 Lrnr_h2o_grid

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
library(h2o)
suppressWarnings(h2o.init())
set.seed(1)

load example data
data(cpp_imputed)
covars <- c(

"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs",
"sexn"

)
outcome <- "haz"
cpp_imputed <- cpp_imputed[1:150,]

create sl3 task
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)

h2o grid search hyperparameter alpha
h2o_glm_grid <- Lrnr_h2o_grid$new(

algorithm = "glm",
hyper_params = list(alpha = c(0, 0.5))

)

Lrnr_hal9001 61

h2o_glm_grid_fit <- h2o_glm_grid$train(task)
pred <- h2o_glm_grid_fit$predict()

End(Not run)

Lrnr_hal9001 Scalable Highly Adaptive Lasso (HAL)

Description

The Highly Adaptive Lasso (HAL) is a nonparametric regression function that has been demon-
strated to optimally estimate functions with bounded (finite) variation norm. The algorithm pro-
ceeds by first building an adaptive basis (i.e., the HAL basis) based on indicator basis functions (or
higher-order spline basis functions) representing covariates and interactions of the covariates up to a
pre-specified degree. The fitting procedures included in this learner use fit_hal from the hal9001
package. For details on HAL regression, consider consulting the following Benkeser and van der
Laan (2016)), Coyle et al. (2020)), Hejazi et al. (2020)).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• max_degree = 2: An integer specifying the highest order of interaction terms for which basis
functions ought to be generated.

• smoothness_orders = 1: An integer specifying the smoothness of the basis functions. See
details of hal9001 package’s fit_hal function for more information.

• num_knots = 5: An integer vector of length 1 or of length max_degree, specifying the max-
imum number of knot points (i.e., bins) for each covariate. If num_knots is a unit-length
vector, then the same num_knots are used for each degree. See details of hal9001 package’s
fit_hal function for more information.

• fit_control: List of arguments, including those specified in fit_hal’s fit_control doc-
umentation, and any additional arguments to be passed to cv.glmnet or glmnet. See the
hal9001 package fit_hal function fdocumentation or more information.

• ...: Other parameters passed to fit_hal and additional arguments defined in Lrnr_base,
such as params like formula.

62 Lrnr_haldensify

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

instantiate with max 2-way interactions, 0-order splines, and binning
(i.e., num_knots) that decreases with increasing interaction degree
hal_lrnr <- Lrnr_hal9001$new(max_degree = 2, num_knots = c(5, 3))
hal_fit <- hal_lrnr$train(task)
hal_preds <- hal_fit$predict()

Lrnr_haldensify Conditional Density Estimation with the Highly Adaptive LASSO

Description

Conditional Density Estimation with the Highly Adaptive LASSO

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• grid_type = "equal_range": A character indicating the strategy to be used in creating
bins along the observed support of A. For bins of equal range, use "equal_range"; consult
the documentation of cut_interval for further information. To ensure each bin has the same
number of observations, use "equal_mass"; consult the documentation of cut_number for

Lrnr_haldensify 63

details. The default is "equal_range" since this has been found to provide better performance
in simulation experiments; however, both types may be specified (i.e., c("equal_range",
"equal_mass")) together, in which case cross-validation will be used to select the optimal
binning strategy.

• n_bins = c(3, 5): This numeric value indicates the number of bins into which the support
of A is to be divided. As with grid_type, multiple values may be specified, in which cross-
validation will be used to select the optimal number of bins.

• lambda_seq = exp(seq(-1, -13, length = 1000L)): A numeric sequence of regularization
parameter values of Lasso regression, which are passed to fit_hal via its argument lambda,
itself passed to glmnet.

• trim_dens = 1/sqrt(n): A numeric giving the minimum allowed value of the resultant den-
sity predictions. Any predicted density values below this tolerance threshold are set to the
indicated minimum. The default is to use the inverse of the square root of the sample size of
the prediction set, i.e., 1/sqrt(n); another notable choice is 1/sqrt(n)/log(n). If there are obser-
vations in the prediction set with values of new_A outside of the support of the training set,
their predictions are similarly truncated.

• ...: Other arguments to be passed directly to haldensify. See its documentation for details.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
library(dplyr)
data(cpp_imputed)
covars <- c("parity", "sexn")
outcome <- "haz"

create task
task <- cpp_imputed %>%

slice(seq(1, nrow(.), by = 3)) %>%
filter(agedays == 1) %>%
sl3_Task$new(
covariates = covars,
outcome = outcome

)

64 Lrnr_HarmonicReg

instantiate the learner
hal_dens <- Lrnr_haldensify$new(

grid_type = "equal_range",
n_bins = c(3, 5),
lambda_seq = exp(seq(-1, -13, length = 100))

)

fit and predict densities
hal_dens_fit <- hal_dens$train(task)
hal_dens_preds <- hal_dens_fit$predict()

End(Not run)

Lrnr_HarmonicReg Harmonic Regression

Description

This learner fits first harmonics in a Fourier expansion to one or more time series. Fourier decom-
position relies on fourier, and the time series is fit using tslm. For further details on working
with harmonic regression for time-series with package forecast, consider consulting Hyndman et
al. (2021)) and Hyndman and Khandakar (2008)).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• K: Maximum order of the fourier terms. Passed to fourier.

• freq: The frequency of the time series.

• ...: Other parameters passed to fourier.

References

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F,
Razbash S, Wang E, Yasmeen F (2021). forecast: Forecasting functions for time series and linear
models. R package version 8.14, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for
R.” Journal of Statistical Software, 26(3), 1–22. https://www.jstatsoft.org/article/view/
v027i03.

https://pkg.robjhyndman.com/forecast/
https://www.jstatsoft.org/article/view/v027i03
https://www.jstatsoft.org/article/view/v027i03

Lrnr_independent_binomial 65

See Also

Other Learners: Custom_chain, Lrnr_arima, Lrnr_bartMachine, Lrnr_base, Lrnr_bayesglm,
Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize,
Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_ga,
Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric, Lrnr_glmnet, Lrnr_glmtree,
Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify,
Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

library(origami)
library(data.table)
data(bsds)

make folds appropriate for time-series cross-validation
folds <- make_folds(bsds,

fold_fun = folds_rolling_window, window_size = 500,
validation_size = 100, gap = 0, batch = 50

)

build task by passing in external folds structure
task <- sl3_Task$new(

data = bsds,
folds = folds,
covariates = c(
"weekday", "temp"

),
outcome = "cnt"

)

create tasks for taining and validation
train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

instantiate learner, then fit and predict
HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105)
HarReg_fit <- HarReg_learner$train(train_task)
HarReg_preds <- HarReg_fit$predict(valid_task)

Lrnr_independent_binomial

Classification from Binomial Regression

66 Lrnr_independent_binomial

Description

This learner provides converts a binomial learner into a multinomial learner using a series of inde-
pendent binomials. The procedure is modeled on https://en.wikipedia.org/wiki/Multinomial_
logistic_regression#As_a_set_of_independent_binary_regressions

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

binomial_learner The learner to wrap.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts, Lrnr_multivariate,
Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner, Lrnr_polspline, Lrnr_pooled_hazards,
Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment,
Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance, Lrnr_sl,
Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

library(dplyr)

load example data
data(cpp)

https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_set_of_independent_binary_regressions
https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_set_of_independent_binary_regressions

Lrnr_lightgbm 67

cpp <- cpp %>%
select(c(bmi, agedays, feeding)) %>%
mutate(feeding = as.factor(feeding)) %>%
na.omit()

create sl3 task
task <- make_sl3_Task(cpp,

covariates = c("agedays", "bmi"),
outcome = "feeding"

)

train independent binomial learner and make predictions
lrnr_indbinomial <- make_learner(Lrnr_independent_binomial)
fit <- lrnr_indbinomial$train(task)
preds <- fit$predict(task)

Lrnr_lightgbm LightGBM: Light Gradient Boosting Machine

Description

This learner provides fitting procedures for lightgbm models, using the lightgbm package, via
lgb.train. These gradient boosted decision tree models feature faster training speed and effi-
ciency, lower memory usage than competing frameworks (e.g., from the xgboost package), better
prediction accuracy, and improved handling of large-scale data. For details on the fitting procedure
and its tuning parameters, consult the documentation of the lightgbm package. The LightGBM
framework was introduced in Ke et al. (2017)).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• num_threads = 1L: Number of threads for hyperthreading.

• ...: Other arguments passed to lgb.train. See its documentation for further details.

References

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T (2017). “LightGBM: A Highly
Efficient Gradient Boosting Decision Tree.” In Advances in Neural Information Processing Systems,
volume 30, 3146–3154.

68 Lrnr_lstm_keras

See Also

Lrnr_gbm for standard gradient boosting models (via the gbm package) and Lrnr_xgboost for the
extreme gradient boosted tree models from the Xgboost framework (via the xgboost package).

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
currently disabled since LightGBM crashes R on Windows
more info at https://github.com/tlverse/sl3/issues/344
data(cpp_imputed)
create task for prediction
cpp_task <- sl3_Task$new(

data = cpp_imputed,
covariates = c("bmi", "parity", "mage", "sexn"),
outcome = "haz"

)

initialization, training, and prediction with the defaults
lgb_lrnr <- Lrnr_lightgbm$new()
lgb_fit <- lgb_lrnr$train(cpp_task)
lgb_preds <- lgb_fit$predict()

get feature importance from fitted model
lgb_varimp <- lgb_fit$importance()

End(Not run)

Lrnr_lstm_keras Long short-term memory Recurrent Neural Network (LSTM) with
Keras

Description

This learner supports long short-term memory (LSTM) recurrent neural network algorithm. This
learner uses the keras package. Note that all preprocessing, such as differencing and seasonal
effects for time series should be addressed before using this learner. Desired lags of the time series
should be added as predictors before using the learner.

Lrnr_lstm_keras 69

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• batch_size: How many times should the training data be used to train the neural network?

• units: Positive integer, dimensionality of the output space.

• dropout: Float between 0 and 1. Fraction of the input units to drop.

• recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear
transformation of the recurrent state.

• activation: Activation function to use. If you pass NULL, no activation is applied (e.g.,
"linear" activation: a(x) = x).

• recurrent_activation: Activation function to use for the recurrent step.

• recurrent_out: Activation function to use for the output step.

• epochs: Number of epochs to train the model.

• lr: Learning rate.

• layers: How many LSTM layers. Only allows for 1 or 2.

• callbacks: List of callbacks, which is a set of functions to be applied at given stages of the
training procedure. Default callback function callback_early_stopping stops training if
the validation loss does not improve across patience number of epochs.

• ...: Other parameters passed to keras.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_mean, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

70 Lrnr_mean

Examples

Not run:
library(origami)
data(bsds)

make folds appropriate for time-series cross-validation
folds <- make_folds(bsds,

fold_fun = folds_rolling_window, window_size = 500,
validation_size = 100, gap = 0, batch = 50

)

build task by passing in external folds structure
task <- sl3_Task$new(

data = bsds,
folds = folds,
covariates = c(
"weekday", "temp"

),
outcome = "cnt"

)

create tasks for taining and validation (simplifed example)
train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

instantiate learner, then fit and predict (simplifed example)
lstm_lrnr <- Lrnr_lstm_keras$new(batch_size = 1, epochs = 200)
lstm_fit <- lstm_lrnr$train(train_task)
lstm_preds <- lstm_fit$predict(valid_task)

End(Not run)

Lrnr_mean Fitting Intercept Models

Description

This learner provides fitting procedures for intercept models. Such models predict the outcome
variable simply as the mean of the outcome vector.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Lrnr_multiple_ts 71

Parameters

• ...: Not used.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_multiple_ts,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

simple, main-terms GLM
lrnr_mean <- make_learner(Lrnr_mean)
mean_fit <- lrnr_mean$train(task)
mean_preds <- mean_fit$predict()

Lrnr_multiple_ts Stratify univariable time-series learners by time-series

Description

Stratify univariable time-series learners by time-series

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

72 Lrnr_multiple_ts

Parameters

learner="learner" An initialized Lrnr_* object.

variable_stratify="variable_stratify" A character giving the variable in the covariates
on which to stratify. Supports only variables with discrete levels coded as numeric.

... Other parameters passed directly to learner$train. See its documentation for details.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

library(origami)
library(dplyr)

set.seed(123)

Simulate simple AR(2) process
data <- matrix(arima.sim(model = list(ar = c(0.9, -0.2)), n = 200))
id <- c(rep("Series_1", 50), rep("Series_2", 50), rep("Series_3", 50), rep("Series_4", 50))
data <- data.frame(data)
data$id <- as.factor(id)
data <- data %>%

group_by(id) %>%
dplyr::mutate(time = 1:n())

data$W1 <- rbinom(200, 1, 0.6)
data$W2 <- rbinom(200, 1, 0.2)

folds <- origami::make_folds(data,
t = max(data$time),
id = data$id,
time = data$time,
fold_fun = folds_rolling_window_pooled,
window_size = 20,
validation_size = 15,
gap = 0,
batch = 10

)

Lrnr_multivariate 73

task <- sl3_Task$new(
data = data, outcome = "data",
time = "time", id = "id",
covariates = c("W1", "W2"),
folds = folds

)

train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

lrnr_arima <- Lrnr_arima$new()
multiple_ts_arima <- Lrnr_multiple_ts$new(learner = lrnr_arima)

multiple_ts_arima_fit <- multiple_ts_arima$train(train_task)
multiple_ts_arima_preds <- multiple_ts_arima_fit$predict(valid_task)

Lrnr_multivariate Multivariate Learner

Description

This learner applies a univariate outcome learner across a vector of outcome variables, effectively
transforming it into a multivariate outcome learner

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

learner The learner to wrap.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

74 Lrnr_nnet

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

library(data.table)

simulate data
set.seed(123)
n <- 1000
p <- 5
pY <- 3
W <- matrix(rnorm(n * p), nrow = n)
colnames(W) <- sprintf("W%d", seq_len(p))
Y <- matrix(rnorm(n * pY, 0, 0.2) + W[, 1], nrow = n)
colnames(Y) <- sprintf("Y%d", seq_len(pY))
data <- data.table(W, Y)
covariates <- grep("W", names(data), value = TRUE)
outcomes <- grep("Y", names(data), value = TRUE)

make sl3 task
task <- sl3_Task$new(data.table::copy(data),

covariates = covariates,
outcome = outcomes

)

train multivariate learner and make predictions
mv_learner <- make_learner(Lrnr_multivariate, make_learner(Lrnr_glm_fast))
mv_fit <- mv_learner$train(task)
mv_pred <- mv_fit$predict(task)
mv_pred <- unpack_predictions(mv_pred)

Lrnr_nnet Feed-Forward Neural Networks and Multinomial Log-Linear Models

Description

This learner provides feed-forward neural networks with a single hidden layer, and for multinomial
log-linear models.

Lrnr_nnet 75

Format

R6Class object.

Value

Learner object with methods for both training and prediction. See Lrnr_base for documentation
on learners.

Parameters

formula A formula of the form class ~ x1 + x2 + ...

weights (case) weights for each example – if missing defaults to 1

size number of units in the hidden layer. Can be zero if there are skip-layer units.

entropy switch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.

decay parameter for weight decay. Default 0.

maxit maximum number of iterations. Default 100.

linout switch for linear output units. Default logistic output units.

... Other parameters passed to nnet.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

76 Lrnr_nnls

Examples

set.seed(123)

load example data
data(cpp_imputed)
covars <- c("bmi", "parity", "mage", "sexn")
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)

train neural networks and make predictions
lrnr_nnet <- Lrnr_nnet$new(linout = TRUE, size = 10, maxit = 1000)
fit <- lrnr_nnet$train(task)
preds <- fit$predict(task)

Lrnr_nnls Non-negative Linear Least Squares

Description

This learner provides fitting procedures for models via non-negative linear least squares regression,
using nnls package’s nnls function.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• convex = FALSE: Normalize the coefficients to be a convex combination.

• ...: Other parameters passed to nnls.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,

Lrnr_optim 77

Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

lrnr_nnls <- make_learner(Lrnr_nnls)
nnls_fit <- lrnr_nnls$train(task)
nnls_preds <- nnls_fit$predict()

NNLS is commonly used as a metalearner in a super learner (i.e., Lrnr_sl)
lrnr_glm <- make_learner(Lrnr_glm)
lrnr_glmnet <- Lrnr_glmnet$new()
lrnr_mean <- Lrnr_mean$new()
learners <- c(lrnr_glm, lrnr_glmnet, lrnr_mean)
names(learners) <- c("glm", "lasso", "mean") # optional, renaming learners
simple_learner_stack <- make_learner(Stack, learners)
sl <- Lrnr_sl$new(learners = simple_learner_stack, metalearner = lrnr_nnls)
sl_fit <- sl$train(task)
sl_preds <- sl_fit$predict()

Lrnr_optim Optimize Metalearner according to Loss Function using optim

Description

This meta-learner provides fitting procedures for any pairing of loss function and metalearner func-
tion, subject to constraints. The optimization problem is solved by making use of optim, For further
details, consult the documentation of optim.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

learner_function=metalearner_linear A function(alpha, X) that takes a vector of covariates
and a matrix of data and combines them into a vector of predictions. See metalearners for
options.

78 Lrnr_pca

loss_function=loss_squared_error A function(pred, truth) that takes prediction and truth vec-
tors and returns a loss vector. See loss_functions for options.

intercept=FALSE If true, X includes an intercept term.

init_0=FALSE If true, alpha is initialized to all 0’s, useful for TMLE. Otherwise, it is initialized to
equal weights summing to 1, useful for Super Learner.

... Not currently used.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Lrnr_pca Principal Component Analysis and Regression

Description

This learner provides facilities for performing principal components analysis (PCA) to reduce the
dimensionality of a data set to a pre-specified value. For further details, consult the documentation
of prcomp from the core package stats. This learner object is primarily intended for use with other
learners as part of a pre-processing pipeline.

Format

R6Class object.

Lrnr_pca 79

Value

Lrnr_base object with methods for training and prediction

Parameters

n_comp A numeric value indicating the number of components to be produced as a result of the
PCA dimensionality reduction. For convenience, this defaults to two (2) components.

center A logical value indicating whether the input data matrix should be centered before per-
forming PCA. This defaults to TRUE since that is the recommended practice. Consider con-
sulting the documentation of prcomp for details.

scale. A logical value indicating whether the input data matrix should be scaled (to unit vari-
ance) before performing PCA. Consider consulting the documentation of prcomp for details.

... Other optional parameters to be passed to prcomp. Consider consulting the documentation of
prcomp for details.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

set.seed(37912)

load example data
ncomp <- 3

80 Lrnr_pkg_SuperLearner

data(cpp_imputed)
covars <- c(

"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs",
"sexn"

)
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)

define learners
glm_fast <- Lrnr_glm_fast$new(intercept = FALSE)
pca_sl3 <- Lrnr_pca$new(n_comp = ncomp, center = TRUE, scale. = TRUE)
pcr_pipe_sl3 <- Pipeline$new(pca_sl3, glm_fast)

create stacks + train and predict
pcr_pipe_sl3_fit <- pcr_pipe_sl3$train(task)
pcr_pred <- pcr_pipe_sl3_fit$predict()

Lrnr_pkg_SuperLearner Use SuperLearner Wrappers, Screeners, and Methods, in sl3

Description

These learners provide an interface to the wrapper functions, screening algorithms, and combination
methods provided by the SuperLearner package. These components add support for a range of
algorithms not currently implemented natively in sl3.

Lrnr_pkg_SuperLearner - Interface for SuperLearner wrapper functions. Use SuperLearner::listWrappers("SL")
for a list.

Use SuperLearner::listWrappers("method") for a list of options.

Use SuperLearner::listWrappers("screen") for a list of options.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

SL_wrapper The wrapper function to use.

... Currently not used.

Lrnr_polspline 81

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_polspline,
Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart,
Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Lrnr_polspline Polyspline - multivariate adaptive polynomial spline regression (poly-
mars) and polychotomous regression and multiple classification (poly-
class)

Description

This learner provides fitting procedures for an adaptive regression procedure using piecewise linear
splines to model the response, using the the polspline package’ functions polymars (for continuous
outcome prediction) or polyclass (for binary or categorical outcome prediction).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

82 Lrnr_pooled_hazards

Parameters

• ...: Other parameters passed to polymars, polyclass, or additional arguments defined in
Lrnr_base (such as params like formula). See their documentation for details.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart,
Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

Not run:
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
polspline_lrnr <- Lrnr_caret$new(method = "rf")
set.seed(693)
polspline_lrnr_fit <- polspline_lrnr$train(task)
polspline_lrnr_predictions <- polspline_lrnr_fit$predict()

End(Not run)

Lrnr_pooled_hazards Classification from Pooled Hazards

Description

This learner provides converts a binomial learner into a multinomial learner using a pooled hazards
model.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Lrnr_pooled_hazards 83

Parameters

binomial_learner The learner to wrap.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart, Lrnr_rugarch,
Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

library(data.table)
set.seed(74294)

n <- 500
x <- rnorm(n)
epsilon <- rnorm(n)
y <- 3 * x + epsilon
data <- data.table(x = x, y = y)
task <- sl3_Task$new(data, covariates = c("x"), outcome = "y")

instantiate learners
hal <- Lrnr_hal9001$new(

lambda = exp(seq(-1, -13, length = 100)),
max_degree = 6,
smoothness_orders = 0

)
hazard_learner <- Lrnr_pooled_hazards$new(hal)
density_learner <- Lrnr_density_discretize$new(

hazard_learner,

84 Lrnr_randomForest

type = "equal_range",
n_bins = 5

)

fit discrete density model to pooled hazards data
set.seed(74294)
fit_density <- density_learner$train(task)
pred_density <- fit_density$predict()

Lrnr_randomForest Random Forests

Description

This learner provides fitting procedures for random forest models, using the randomForest pack-
age, using randomForest function.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

• ntree = 500: Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times.

• keep.forest = TRUE: If TRUE, forest is stored, which is required for prediction.

• nodesize = 5: Minimum number of observations in a terminal node.

• ...: Other parameters passed to randomForest.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart, Lrnr_rugarch,
Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Lrnr_ranger 85

Examples

data(cpp_imputed)
create task for prediction
cpp_task <- sl3_Task$new(

data = cpp_imputed,
covariates = c("bmi", "parity", "mage", "sexn"),
outcome = "haz"

)
initialization, training, and prediction with the defaults
rf_lrnr <- Lrnr_randomForest$new()
rf_fit <- rf_lrnr$train(cpp_task)
rf_preds <- rf_fit$predict()

Lrnr_ranger Ranger: Fast(er) Random Forests

Description

This learner provides fitting procedures for a faster implementation of Random Forests, using
the routines from ranger (described in Wright and Ziegler (2017)) through a call to the function
ranger. Variable importance functionality is also provided through invocation of the importance
method.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• num.trees = 500: Number of trees to be used in growing the forest.
• write.forest = TRUE: If TRUE, forest is stored, which is required for prediction. Set to FALSE

to reduce memory usage if downstream prediction is not intended.
• importance = "none": Variable importance mode, one of "none", "impurity", "impurity_corrected",

"permutation". The "impurity" measure is the Gini index for classification, the variance of the
responses for regression, and the sum of test statistics (for survival analysis, see the splitrule
argument of ranger).

• num.threads = 1: Number of threads.
• ...: Other parameters passed to ranger. See its documentation for details.

References

Wright MN, Ziegler A (2017). “ranger: A Fast Implementation of Random Forests for High Dimen-
sional Data in C++ and R.” Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01.

https://doi.org/10.18637/jss.v077.i01

86 Lrnr_revere_task

See Also

Lrnr_randomForest for a similar learner using randomForest

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_revere_task, Lrnr_rpart,
Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(mtcars)
create task for prediction
mtcars_task <- sl3_Task$new(

data = mtcars,
covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
"gear", "carb"

),
outcome = "mpg"

)
initialization, training, and prediction with the defaults
ranger_lrnr <- Lrnr_ranger$new()
ranger_fit <- ranger_lrnr$train(mtcars_task)
ranger_preds <- ranger_fit$predict()

variable importance
ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected")
ranger_fit_importance <- ranger_lrnr_importance$train(mtcars_task)
ranger_importance <- ranger_fit_importance$importance()

screening based on variable importance, example in glm pipeline
ranger_importance_screener <- Lrnr_screener_importance$new(

learner = ranger_lrnr_importance, num_screen = 3
)
glm_lrnr <- make_learner(Lrnr_glm)
ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr)
ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task)

Lrnr_revere_task Learner that chains into a revere task

Lrnr_rpart 87

Description

A wrapper around a revere generator that produces a revere task on chain

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

revere_function The revere generator function to wrap

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_rpart, Lrnr_rugarch,
Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Lrnr_rpart Learner for Recursive Partitioning and Regression Trees

Description

This learner uses rpart from the rpart package to fit recursive partitioning and regression trees.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

88 Lrnr_rugarch

Parameters

• factor_binary_outcome = TRUE: Logical indicating whether a binary outcome should be de-
fined as a factor instead of a numeric. This only needs to be modified to FALSE when the user
has a binary outcome and they would like to use the mean squared error (MSE) as the splitting
metric.

• ...: Other parameters to be passed directly to rpart (see its documentation for details), and
additional arguments defined in Lrnr_base, such as formula.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
rpart_lrnr <- Lrnr_rpart$new()
set.seed(693)
rpart_fit <- rpart_lrnr$train(task)

Lrnr_rugarch Univariate GARCH Models

Description

This learner supports autoregressive fractionally integrated moving average and various flavors of
generalized autoregressive conditional heteroskedasticity models for univariate time-series. All the
models are fit using ugarchfit.

Format

An R6Class object inheriting from Lrnr_base.

Lrnr_rugarch 89

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• variance.model: List containing variance model specification. This includes model, GARCH
order, submodel, external regressors and variance tageting. Refer to ugarchspec for more in-
formation.

• mean.model: List containing the mean model specification. This includes ARMA model,
whether the mean should be included, and external regressors among others.

• distribution.model: Conditional density to be used for the innovations.

• start.pars:List of staring parameters for the optimization routine.

• fixed.pars:List of parameters which are to be kept fixed during the optimization routine.

• ...: Other parameters passed to ugarchfit.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X(), undocumented_learner

Examples

library(origami)
library(data.table)
data(bsds)

make folds appropriate for time-series cross-validation
folds <- make_folds(bsds,

fold_fun = folds_rolling_window, window_size = 500,
validation_size = 100, gap = 0, batch = 50

)

build task by passing in external folds structure
task <- sl3_Task$new(

data = bsds,
folds = folds,
covariates = c(

90 Lrnr_screener_augment

"weekday", "temp"
),
outcome = "cnt"

)

create tasks for taining and validation
train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])

instantiate learner, then fit and predict
HarReg_learner <- Lrnr_HarmonicReg$new(K = 7, freq = 105)
HarReg_fit <- HarReg_learner$train(train_task)
HarReg_preds <- HarReg_fit$predict(valid_task)

Lrnr_screener_augment Augmented Covariate Screener

Description

This learner augments a set of screened covariates with covariates that should be included by default,
even if the screener did not select them.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

screener An instantiated screener.
default_covariates Vector of covariate names to be automatically added to the vector selected

by the screener, regardless of whether or not these covariates were selected by the screener.
... Other parameters passed to screener.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Lrnr_screener_coefs 91

Examples

library(data.table)

load example data
data(cpp_imputed)
setDT(cpp_imputed)
cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))]
covars <- c(

"apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs",
"sexn"

)
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(data.table::copy(cpp_imputed),

covariates = covars,
outcome = outcome

)

screener_cor <- make_learner(
Lrnr_screener_correlation,
type = "rank",
num_screen = 2

)
screener_augment <- Lrnr_screener_augment$new(screener_cor, covars)
screener_fit <- screener_augment$train(task)
selected <- screener_fitfit_objectselected
screener_selected <- screener_fitfit_objectscreener_selected

Lrnr_screener_coefs Coefficient Magnitude Screener

Description

This learner provides screening of covariates based on the magnitude of their estimated coefficients
in a (possibly regularized) GLM.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

92 Lrnr_screener_coefs

Parameters

learner An instantiated learner to use for estimating coefficients used in screening.

threshold = 1e-3 Minimum size of coefficients to be kept.

max_screen = NULL Maximum number of covariates to be kept.

min_screen = 2 Maximum number of covariates to be kept. Only applicable when supplied learner
is a Lrnr_glmnet.

... Other parameters passed to learner.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_correlation, Lrnr_screener_importance,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

library(data.table)

load example data
data(cpp_imputed)
setDT(cpp_imputed)
cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))]
covars <- c(

"apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs",
"sexn"

)
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(data.table::copy(cpp_imputed),

covariates = covars,
outcome = outcome

)

lrnr_glmnet <- make_learner(Lrnr_glmnet)
lrnr_glm <- make_learner(Lrnr_glm)
lrnr_mean <- make_learner(Lrnr_mean)
lrnrs <- make_learner(Stack, lrnr_glm, lrnr_mean)

glm_screener <- make_learner(Lrnr_screener_coefs, lrnr_glm, max_screen = 2)
glm_screener_pipeline <- make_learner(Pipeline, glm_screener, lrnrs)

Lrnr_screener_correlation 93

fit_glm_screener_pipeline <- glm_screener_pipeline$train(task)
preds_glm_screener_pipeline <- fit_glm_screener_pipeline$predict()

Lrnr_screener_correlation

Correlation Screening Procedures

Description

This learner provides covariate screening procedures by running a test of correlation (Pearson de-
fault) with the cor.test function, and then selecting the (1) top ranked variables (default), or (2)
the variables with a pvalue lower than some pre-specified threshold.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

method = ’pearson’ Correlation coefficient used for test.

type = c(’rank’, ’threshold’) Screen covariates by (1) rank (default), which chooses the top
num_screen correlated covariates; or (2) threshold, which chooses covariates with a correlation-
test- based pvalue lower the threshold and a minimum of min_screen covariates.

num_screen = 5 Number of covariates to select.

pvalue_threshold = 0.1 Maximum p-value threshold. Covariates with a pvalue lower than this
threshold will be retained, and at least min_screen most significant covariates will be selected.

min_screen = 2 Minimum number of covariates to select. Used in pvalue_threshold screening
procedure.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_importance,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

94 Lrnr_screener_importance

Examples

library(data.table)

load example data
data(cpp_imputed)
setDT(cpp_imputed)
cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))]
covars <- c(

"apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs",
"sexn"

)
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(data.table::copy(cpp_imputed),

covariates = covars,
outcome = outcome

)

lrnr_glmnet <- make_learner(Lrnr_glmnet)
lrnr_glm <- make_learner(Lrnr_glm)
lrnr_mean <- make_learner(Lrnr_mean)
lrnrs <- make_learner(Stack, lrnr_glm, lrnr_mean)

screen_corP <- make_learner(Lrnr_screener_correlation, type = "threshold")
corP_pipeline <- make_learner(Pipeline, screen_corP, lrnrs)
fit_corP <- corP_pipeline$train(task)
preds_corP_screener <- fit_corP$predict()

Lrnr_screener_importance

Variable Importance Screener

Description

This learner screens covariates based on their variable importance, where the importance values
are obtained from the learner. Any learner with an importance method can be used. The set
of learners with support for importance can be found with sl3_list_learners("importance").
Like all other screeners, this learner is intended for use in a Pipeline, so the output from this
learner (i.e., the selected covariates) can be used as input for the next learner in the pipeline.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Lrnr_screener_importance 95

Parameters

• learner: An instantiated learner that supports variable importance. The set of learners with
this support can be obtained via sl3_list_learners("importance").

• num_screen = 5: The top n number of "most impotant" variables to retain.

• ...: Other parameters passed to the learner’s importance function.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm,
Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

data(mtcars)
mtcars_task <- sl3_Task$new(

data = mtcars,
covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
"gear", "carb"

),
outcome = "mpg"

)
glm_lrnr <- make_learner(Lrnr_glm)

screening based on \code{\link{Lrnr_ranger}} variable importance
ranger_lrnr_importance <- Lrnr_ranger$new(importance = "impurity_corrected")
ranger_importance_screener <- Lrnr_screener_importance$new(

learner = ranger_lrnr_importance, num_screen = 3
)
ranger_screen_glm_pipe <- Pipeline$new(ranger_importance_screener, glm_lrnr)
ranger_screen_glm_pipe_fit <- ranger_screen_glm_pipe$train(mtcars_task)

screening based on \code{\link{Lrnr_randomForest}} variable importance
rf_lrnr <- Lrnr_randomForest$new()
rf_importance_screener <- Lrnr_screener_importance$new(

learner = rf_lrnr, num_screen = 3
)
rf_screen_glm_pipe <- Pipeline$new(rf_importance_screener, glm_lrnr)
rf_screen_glm_pipe_fit <- rf_screen_glm_pipe$train(mtcars_task)

screening based on \code{\link{Lrnr_randomForest}} variable importance

96 Lrnr_sl

xgb_lrnr <- Lrnr_xgboost$new()
xgb_importance_screener <- Lrnr_screener_importance$new(

learner = xgb_lrnr, num_screen = 3
)
xgb_screen_glm_pipe <- Pipeline$new(xgb_importance_screener, glm_lrnr)
xgb_screen_glm_pipe_fit <- xgb_screen_glm_pipe$train(mtcars_task)

Lrnr_sl The Super Learner Algorithm

Description

Learner that encapsulates the Super Learner algorithm. Fits metalearner on cross-validated predic-
tions from learners. Then forms a pipeline with the learners.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• learners: The "library" of user-specified algorithms for the super learner to consider as can-
didates.

• metalearner = "default": The metalearner to be fit on c cross-validated predictions from
the candidates. If "default", the default_metalearner is used to construct a metalearner
based on the outcome_type of the training task.

• cv_control = NULL: Optional list of arguments that will be used to define a specific cross-
validation fold structure for fitting the super learner. Intended for use in a nested cross-
validation scheme, such as cross-validated super learner (cv_sl) or when Lrnr_sl is con-
sidered in the list of candidate learners in another Lrnr_sl. Includes the arguments listed
below, and any others to be passed to fold_funs:

– strata = NULL: Discrete covariate or outcome name to define stratified cross-validation
folds. If NULL and if task$outcome_type$type is binary or categorical, then the default
behavior is to consider stratified cross-validation, where the strata are defined with respect
to the outcome. To override the default behavior, i.e., to not consider stratified cross-
validation when strata = NULL and task$outcome_type$type is binary or categorical
is not NULL, set strata = "none".

– cluster_by_id = TRUE: Logical to specify clustered cross-validation scheme according
to id in task. Specifically, if task$nodes$id is not NULL and if cluster_by_id = TRUE
(default) then task$nodes$id is used to define a clustered cross-validation scheme, so
dependent units are placed together in the same training sets and validation set. To over-
ride the default behavior, i.e., to not consider clustered cross-validation when task$nodes$id
is not NULL, set cluster_by_id = FALSE.

Lrnr_sl 97

– fold_fun = NULL: A function indicating the origami cross-validation scheme to use, such
as folds_vfold for V-fold cross-validation. See fold_funs for a list of possibilities.
If NULL (default) and if other cv_control arguments are specified, e.g., V, strata or
cluster_by_id, then the default behavior is to set fold_fun = origami::folds_vfold.

– ...: Other arguments to be passed to fold_fun, such as V for fold_fun = folds_vfold.
See fold_funs for a list fold-function-specific possible arguments.

• keep_extra = TRUE: Stores all sub-parts of the super learner computation. When FALSE, the
resulting object has a memory footprint that is significantly reduced through the discarding of
intermediary data structures.

• verbose = NULL: Whether to print cv_control-related messages. Warnings and errors are
always printed. When verbose = NULL, verbosity specified by option sl3.verbose will be
used, and the default sl3.verbose option is FALSE. (Note: to turn on sl3.verbose option,
set options("sl3.verbose" = TRUE).)

• ...: Any additional parameters that can be considered by Lrnr_base.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates,
Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Examples

Not run:
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
this is just for illustrative purposes, not intended for real applications
of the super learner!
glm_lrn <- Lrnr_glm$new()
ranger_lrn <- Lrnr_ranger$new()
lasso_lrn <- Lrnr_glmnet$new()
eSL <- Lrnr_sl$new(learners = list(glm_lrn, ranger_lrn, lasso_lrn))
eSL_fit <- eSL$train(task)
example with cv_control, where Lrnr_sl included as a candidate
eSL_nested5folds <- Lrnr_sl$new(

learners = list(glm_lrn, ranger_lrn, lasso_lrn),
cv_control = list(V = 5),
verbose = FALSE

)

98 Lrnr_solnp

dSL <- Lrnr_sl$new(
learners = list(glm_lrn, ranger_lrn, lasso_lrn, eSL_nested5folds),
metalearner = Lrnr_cv_selector$new(loss_squared_error)

)
dSL_fit <- dSL$train(task)
example with cv_control, where we use cross-validated super learner
cvSL_fit <- cv_sl(

lrnr_sl = eSL_nested5folds, task = task, eval_fun = loss_squared_error
)

End(Not run)

Lrnr_solnp Nonlinear Optimization via Augmented Lagrange

Description

This meta-learner provides fitting procedures for any pairing of loss or risk function and metalearner
function, subject to constraints. The optimization problem is solved by making use of solnp, using
Lagrange multipliers. An important note from the solnp documentation states that the control
parameters tol and delta are key in getting any possibility of successful convergence, therefore
it is suggested that the user change these appropriately to reflect their problem specification. For
further details, consult the documentation of the Rsolnp package.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• learner_function = metalearner_linear: A function(alpha, X) that takes a vector of co-
variates and a matrix of data and combines them into a vector of predictions. See metalearners
for options.

• eval_function = loss_squared_error: A function(pred, truth) that takes prediction and
truth vectors and returns a loss vector or a risk scalar. See loss_functions and risk_functions
for options and more detail.

• make_sparse = TRUE: If TRUE, zeros out small alpha values.

• convex_combination = TRUE: If TRUE, constrain alpha to sum to 1.

• init_0 = FALSE: If TRUE, alpha is initialized to all 0’s, useful for TMLE. Otherwise, it is
initialized to equal weights summing to 1, useful for Super Learner.

Lrnr_solnp 99

• rho = 1: This is used as a penalty weighting scaler for infeasibility in the augmented objective
function. The higher its value the more the weighting to bring the solution into the feasible
region (default 1). However, very high values might lead to numerical ill conditioning or
significantly slow down convergence.

• outer.iter = 400: Maximum number of major (outer) iterations.

• inner.iter = 800: Maximum number of minor (inner) iterations.

• delta = 1e-7:Relative step size in forward difference evaluation.

• tol = 1e-8: Relative tolerance on feasibility and optimality.

• trace = FALSE: The value of the objective function and the parameters are printed at every
major iteration.

• ...: Additional arguments defined in Lrnr_base, such as params (like formula) and name.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates,
Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Examples

define ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

build relatively fast learner library (not recommended for real analysis)
lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
ranger_lrnr <- Lrnr_ranger$new()
lrnrs <- c(lasso_lrnr, glm_lrnr)
names(lrnrs) <- c("lasso", "glm")
lrnr_stack <- make_learner(Stack, lrnrs)

instantiate SL with solnp metalearner
solnp_meta <- Lrnr_solnp$new()
sl <- Lrnr_sl$new(lrnr_stack, solnp_meta)
sl_fit <- sl$train(task)

100 Lrnr_solnp_density

Lrnr_solnp_density Nonlinear Optimization via Augmented Lagrange

Description

This meta-learner provides fitting procedures for density estimation, finding convex combinations of
candidate density estimators by minimizing the cross-validated negative log-likelihood loss of each
candidate density. The optimization problem is solved by making use of solnp, using Lagrange
multipliers. For further details, consult the documentation of the Rsolnp package.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

... Not currently used.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_stratified, Lrnr_subset_covariates,
Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Lrnr_stratified 101

Lrnr_stratified Stratify learner fits by a single variable

Description

Stratify learner fits by a single variable

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

learner="learner" An initialized Lrnr_* object.

variable_stratify="variable_stratify" character giving the variable in the covariates on
which to stratify. Supports only variables with discrete levels coded as numeric.

... Other parameters passed directly to learner$train. See its documentation for details.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_subset_covariates,
Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Examples

library(data.table)

load example data set
data(cpp_imputed)
setDT(cpp_imputed)

use covariates of intest and the outcome to build a task object
covars <- c("apgar1", "apgar5", "sexn")
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = "haz")

102 Lrnr_subset_covariates

hal_lrnr <- Lrnr_hal9001$new(fit_control = list(n_folds = 3))
stratified_hal <- Lrnr_stratified$new(

learner = hal_lrnr,
variable_stratify = "sexn"

)

stratified learner
set.seed(123)
stratified_hal_fit <- stratified_hal$train(task)
stratified_prediction <- stratified_hal_fit$predict(task = task)

Lrnr_subset_covariates

Learner with Covariate Subsetting

Description

This learner provides fitting procedures for subsetting covariates. It is a convenience utility for
reducing the number of covariates to be fit.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

... Not currently used.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

Lrnr_svm 103

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Examples

load example data
data(cpp_imputed)
covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn")
outcome <- "haz"

create sl3 task
task <- sl3_Task$new(data.table::copy(cpp_imputed),

covariates = covars,
outcome = outcome,
folds = origami::make_folds(cpp_imputed, V = 3)

)

glm_learner <- Lrnr_glm$new()
glmnet_learner <- Lrnr_glmnet$new()
subset_apgar <- Lrnr_subset_covariates$new(covariates = c("apgar1", "apgar5"))
learners <- list(glm_learner, glmnet_learner, subset_apgar)
sl <- make_learner(Lrnr_sl, learners, glm_learner)

sl_fit <- sl$train(task)
sl_pred <- sl_fit$predict()

Lrnr_svm Support Vector Machines

Description

This learner provides fitting procedures for support vector machines, using the routines from e1071
(described in Meyer et al. (2021) and Chang and Lin (2011), the core library to which e1071 is an
interface) through a call to the function svm.

Format

An R6Class object inheriting from Lrnr_base.

104 Lrnr_svm

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• scale = TRUE: A logical vector indicating the variables to be scaled. For a detailed description,
please consult the documentation for svm.

• type = NULL: SVMs can be used as a classification machine, as a a regression machine, or for
novelty detection. Depending of whether the outcome is a factor or not, the default setting for
this argument is "C-classification" or "eps-regression", respectively. This may be overwritten
by setting an explicit value. For a full set of options, please consult the documentation for
svm.

• kernel = "radial": The kernel used in training and predicting. You may consider changing
some of the optional parameters, depending on the kernel type. Kernel options include: "lin-
ear", "polynomial", "radial" (the default), "sigmoid". For a detailed description, consult the
documentation for svm.

• fitted = TRUE: Logical indicating whether the fitted values should be computed and included
in the model fit object or not.

• probability = FALSE: Logical indicating whether the model should allow for probability pre-
dictions.

• ...: Other parameters passed to svm. See its documentation for details.

References

Chang C, Lin C (2011). “LIBSVM: A library for support vector machines.” ACM Transactions on
Intelligent Systems and Technology, 2(3), 27:1–27:27. Software available at https://www.csie.
ntu.edu.tw/~cjlin/libsvm/.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2021). e1071: Misc Functions of
the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package
version 1.7-6, https://CRAN.R-project.org/package=e1071.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack,
define_h2o_X(), undocumented_learner

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://CRAN.R-project.org/package=e1071

Lrnr_tsDyn 105

Examples

data(mtcars)
create task for prediction
mtcars_task <- sl3_Task$new(

data = mtcars,
covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
"gear", "carb"

),
outcome = "mpg"

)
initialization, training, and prediction with the defaults
svm_lrnr <- Lrnr_svm$new()
svm_fit <- svm_lrnr$train(mtcars_task)
svm_preds <- svm_fit$predict()

Lrnr_tsDyn Nonlinear Time Series Analysis

Description

This learner supports various forms of nonlinear autoregression, including additive AR, neural nets,
SETAR and LSTAR models, threshold VAR and VECM.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

learner Available built-in time series models. Currently available can be listed with available-
Models() function.

m = 1 embedding dimension.

... Additional learner-specific arguments.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,

106 Lrnr_ts_weights

Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Lrnr_ts_weights Time-specific weighting of prediction losses

Description

A wrapper around any learner that reweights observations. This reweighted is intended for time
series, and ultimately assigns weights to losses. This learner is particularly useful as a metalearner
wrapper. It can be used to create a time-adaptive ensemble, where a super learner is created in a
manner that places more weight (with max weight of 1) on recent losses, and less weight is placed
on losses further in the past.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

learner The learner to wrap

folds=NULL An origami folds object. If NULL, folds from the task are used

full_fit=FALSE If TRUE, also fit the underlying learner on the full data. This can then be accessed
with predict_fold(task, fold_number="full")

window Observations corresponding to times outside of the window are assigned weight of 0, and
obervations corresponding to times within the window are assigned weight of 1. The window
is defined with respect to the difference from the maximum time, where all times are obtained
from the task node for time. For example, if the maximum time is 100 and the window is
10, then obervations corresponding to times 90-100 are assigned weight 1 and obervations
for times 1-89 are assigned weight 0. If rate is provided with window, then times within the
window are assigned according to the rate argument (and potentially delay_decay), and the
times outside of the window are still assigned weight of 0.

rate A rate of decay to apply to the losses, where the decay function is (1-rate)^lag and the lag is
the difference from all times to the maximum time.

delay_decay The amount of time to delay decaying weights, for optional use with rate argument.
The delay decay is subtracted from the lags, such that lags less than the delay decay have lag of
0 and thus weight of 1. For example, a delay decay of 10 assigns weight 1 to observations that
are no more than 10 time points away from the maximum time; and for observations that are
more than 10 time points away from the maximum time, the weight is assigned according to

Lrnr_xgboost 107

the decay function. In this example, observations corresponding to 11 time points away from
the maximum time would be assigned lag=1, 11-10, when setting the weights with respect to
(1-rate)^lag.

... Not currently used.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Lrnr_xgboost xgboost: eXtreme Gradient Boosting

Description

This learner provides fitting procedures for xgboost models, using the xgboost package, via xgb.train.
Such models are classification and regression trees with extreme gradient boosting. For details on
the fitting procedure, consult the documentation of the xgboost and Chen and Guestrin (2016)).

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list
of learner functionality, see the complete documentation of Lrnr_base.

Parameters

• nrounds=20: Number of fitting iterations.

• ...: Other parameters passed to xgb.train.

References

Chen T, Guestrin C (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, 785–794.

108 make_learner_stack

See Also

Lrnr_gbm for standard gradient boosting models (via the gbm package) and Lrnr_lightgbm for the
faster and more efficient gradient boosted trees from the LightGBM framework (via the lightgbm
package).

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Pipeline, Stack, define_h2o_X(),
undocumented_learner

Examples

data(mtcars)
mtcars_task <- sl3_Task$new(

data = mtcars,
covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am",
"gear", "carb"

),
outcome = "mpg"

)

initialization, training, and prediction with the defaults
xgb_lrnr <- Lrnr_xgboost$new()
xgb_fit <- xgb_lrnr$train(mtcars_task)
xgb_preds <- xgb_fit$predict()

get feature importance from fitted model
xgb_varimp <- xgb_fit$importance()

make_learner_stack Make a stack of sl3 learners

Description

Produce a stack of learners by passing in a list with IDs for the learners. The resultant stack of
learners may then be used as normal.

Usage

make_learner_stack(...)

metalearners 109

Arguments

... Each argument is a list that will be passed to make_learner

Value

An sl3 Stack consisting of the learners passed in as arguments the list argument to this function.
This Stack has all of the standard methods associated with such objects.

Examples

constructing learners with default settings
sl_stack_easy <- make_learner_stack(

"Lrnr_mean", "Lrnr_glm_fast",
"Lrnr_xgboost"

)

constructing learners with arguments passed in
sl_stack <- make_learner_stack(

"Lrnr_mean",
list("Lrnr_hal9001",

n_folds = 10,
use_min = TRUE

)
)

metalearners Combine predictions from multiple learners

Description

Combine predictions from multiple learners

Usage

metalearner_logistic_binomial(alpha, X, trim)

metalearner_linear(alpha, X)

metalearner_linear_multivariate(alpha, X)

metalearner_linear_multinomial(alpha, X)

Arguments

alpha a vector of combination coefficients

X a matrix of predictions

trim a value use to trim predictions away from 0 and 1.

110 Pipeline

pack_predictions Pack multidimensional predictions into a vector (and unpack again)

Description

Pack multidimensional predictions into a vector (and unpack again)

Usage

pack_predictions(pred_matrix)

unpack_predictions(x)

S3 method for class 'packed_predictions'
print(x, ...)

normalize_rows(x)

Arguments

pred_matrix a matrix of prediciton values

x a packed prediction list

... ignored

Pipeline Pipeline (chain) of learners.

Description

A Pipeline of learners is a way to "chain" Learners together, where the output of one learner is used
as output for the next learner. This can be used for things like screening, two stage machine learning
methods, and Super Learning. A pipeline is fit by fitting the first Learner, calling chain() to create
the next task, which becomes the training data for the next Learner. Similarly, for prediction, the
predictions from the first Learner become the data to predict on for the next Learner.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

... Parameters should be individual Learners, in the order they should be applied.

pooled_hazard_task 111

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Stack,
define_h2o_X(), undocumented_learner

pooled_hazard_task Generate A Pooled Hazards Task from a Failure Time (or Categorical)
Task

Description

Generate A Pooled Hazards Task from a Failure Time (or Categorical) Task

Usage

pooled_hazard_task(task, trim = TRUE)

Arguments

task A sl3_Task where the outcome is failure time.

trim If true, remove entries after failure time for each observation.

112 predict_classes

prediction_plot Plot predicted and true values for diganostic purposes

Description

If a Lrnr_sl fit is provided, predictions will be generated from the cross-validated learner fits and
final metalearner fit. Otherwise, non cross-validated predictions will be used an an error will be
thrown

Usage

prediction_plot(learner_fit)

Arguments

learner_fit A fit sl3 learner object. Ideally from a Lrnr_sl

Value

A ggplot2 object

predict_classes Predict Class from Predicted Probabilities

Description

Returns the most likely class label for each row of predicted class probabilities

Usage

predict_classes(predictions)

Arguments

predictions the nxc matrix where each row are predicted probabilities for one observation
for each of c classes.

Value

a vector of length n, the predicted class labels as a factor variable

process_data 113

process_data Process Data

Description

A function called upon creating a task that uses the data provided to the task in order to process the
covariates and identify missingness in the outcome. See parameters and details for more informa-
tion.

Usage

process_data(data, nodes, column_names, flag = TRUE,
drop_missing_outcome = FALSE)

Arguments

data A data.table containing the analytic dataset. In creating the sl3_Task, the
data passed to the task is supplied for this argument.

nodes A list of character vectors for covariates, outcome, id, weights, and offset,
which is generated when creating the sl3_Task if not already specified as an
argument to make_sl3_Task.

column_names A named list of column names in the data, which is generated when creating the
sl3_Task if not already specified as an argument to make_sl3_Task.

flag Logical (default TRUE) indicating whether to notify the user when there are out-
comes that are missing, which can be modified when creating the sl3_Task by
setting flag = FALSE.

drop_missing_outcome

Logical (default FALSE) indicating whether to drop observations with missing
outcomes, which can be modified when creating the sl3_Task by setting drop_missing_outcome
= TRUE.

Details

If the data provided to the task contains missing covariate values, then a few things will happen.
First, for each covariate with missing values, if the proportion of missing values is greater than
getOption("sl3.max_p_missing"), the covariate will be dropped. (The default option "sl3.max_p_missing"
is 0.5 and it can be modified to say, 0.75, by setting options("sl3.max_p_missing" = 0.75)).
Also, for each covariate with missing values that was not dropped, a so-called "missingness in-
dicator" (that takes the name of the covariate with prefix "delta_") will be added as an additional
covariate. The missingness indicator will take a value of 0 if the covariate value was missing and
1 if not. Also, imputation will be performed for each covariate with missing values: continuous
covariates are imputed with the median, and discrete covariates are imputed with the mode. This
coupling of imputation and missingness indicators removes the missing covariate values, while pre-
serving the pattern of missingness, respectively. To avoid this default imputation, users can perform
imputation on their analytic dataset before supplying it to make_sl3_Task. We generally recom-
mend the missingness indicators be added regardless of the imputation strategy, unless missingness
is very rare.

114 risk_functions

This function also coverts any character covariates to factors, and one-hot encodes factor covariates.

Lastly, if the outcome is supplied in creating the sl3_Task and if missing outcome values are de-
tected in data, then a warning will be thrown. If drop_missing_outcome = TRUE then observations
with missing outcomes will be dropped.

Value

A list of processed data, nodes and column names

risk Risk Estimation

Description

Estimates a risk for a given set of predictions and loss function.

Usage

risk(pred, observed, loss = loss_squared_error, weights = NULL)

Arguments

pred A vector of predicted values.

observed A vector of observed values.

loss A loss function. For options, see loss_functions.

weights A vector of weights.

risk_functions FACTORY RISK FUNCTION FOR ROCR PERFORMANCE MEA-
SURES WITH BINARY OUTCOMES

Description

Factory function for estimating an ROCR-based risk for a given ROCR measure, and the risk is
defined as one minus the performance measure.

Usage

custom_ROCR_risk(measure, cutoff = 0.5, name = NULL, ...)

safe_dim 115

Arguments

measure A character indicating which ROCR performance measure to use for evaluation.
The measure must be either cutoff-dependent so a single value can be selected
(e.g., "tpr"), or it’s value is a scalar (e.g., "aucpr"). For more information, see
performance.

cutoff A numeric value specifying the cutoff for choosing a single performance mea-
sure from the returned set. Only used for performance measures that are cutoff-
dependent and default is 0.5. See performance for more detail.

name An optional character string for user to supply their desired name for the perfor-
mance measure, which will be used for naming subsequent risk-related tables
and metrics (e.g., cv_risk column names). When name is not supplied, the
measure will be used for naming.

... Optional arguments to specific ROCR performance measures. See performance
for more detail.

Note

This risk does not take into account weights. In order to use this risk, it must first be instantiated
with respect to the ROCR performance measure of interest, and then the user-defined function can
be used.

safe_dim dim that works for vectors too

Description

safe_dim tries to get dimensions from dim and falls back on length if dim returns NULL

Usage

safe_dim(x)

Arguments

x the object to get dimensions from

Shared_Data Container Class for data.table Shared Between Tasks

Description

Mostly to deal with alloc.col shallow copies, but also nice to have a bit more abstraction.

116 sl3_list_properties

sl3Options Querying/setting a single sl3 option

Description

To list all sl3 options, just run this function without any parameters provided. To query only one
value, pass the first parameter. To set that, use the value parameter too.

Usage

sl3Options(o, value)

Arguments

o Option name (string).
value Value to assign (optional)

Examples

Not run:
sl3Options()
sl3Options("sl3.verbose")
sl3Options("sl3.temp.dir")
sl3Options("sl3.verbose", TRUE)

End(Not run)
#

sl3_list_properties List sl3 Learners

Description

Lists learners in sl3 (defined as objects that start with Lrnr_ and inherit from Lrnr_base)

Usage

sl3_list_properties()

sl3_list_learners(properties = c())

Arguments

properties a vector of properties that learners must match to be returned

Value

a vector of learner names that match the property list

sl3_revere_Task 117

sl3_revere_Task Revere (SplitSpecific) Task

Description

A task that has different realizations in different folds Useful for Revere CV operations

Details

Learners with property "cv" must use these tasks correctly

Other learners will treat this as the equivalent of the "full" task.

sl3_Task Define a Machine Learning Task

Description

An increasingly thick wrapper around a data.table containing the data for a prediction task. This
contains metadata about the particular machine learning problem, including which variables are to
be used as covariates and outcomes.

Usage

make_sl3_Task(...)

Arguments

... Passes all arguments to the constructor. See documentation for Constructor be-
low.

Format

R6Class object.

Value

sl3_Task object

118 sl3_Task

Constructor

make_sl3_Task(data, covariates, outcome = NULL, outcome_type = NULL, outcome_levels =
NULL, id = NULL, weights = NULL, offset = NULL, nodes = NULL, column_names = NULL, folds
= NULL, drop_missing_outcome = FALSE, flag = TRUE)

data A data.frame or data.table containing the analytic dataset.

covariates A character vector of variable names that define the set of covariates.

outcome A character vector of variable names that define the set of outcomes. Usually just one vari-
able, although some learners support multivariate outcomes. Use sl3_list_learners("multivariate_outcome")
to find such learners.

outcome_type A Variable_type object that defines the variable type of the outcome. Alterna-
tively, a character specifying such a type. See variable_type for details on defining variable
types.

outcome_levels A vector of levels expected for the outcome variable. If outcome_type is a
character, this will be used to construct an appropriate variable_type object.

id A character indicating which variable (if any) to be used as an identifier for independent obser-
vations, which would be necessary if there are clusters of dependent units in the data (e.g., re-
peated measures on the same individual). The id is used to define a clustered cross-validation
scheme (if folds is not already supplied to make_sl3_Task), for learners that use cross-
validation as part of their fitting procedure. Use sl3_list_learners("ids") to find learners
whose fitting procedures support clustered observations, and use sl3_list_learners("cv")
to find learners whose fitting procedures involve cross-validation.

weights A character indicating which variable (if any) to be used as observation weights, for
learners that support that. Use sl3_list_learners("weights") to find such learners.

offset A character indicating which variable (if any) to be used as an observation offset, for learn-
ers that support that. Use sl3_list_learners("offset") to find such learners.

nodes A list of character vectors as nodes. This will override the covariates, outcome, id,
weights, and offset arguments if specified, serving as an alternative way to specify those
arguments.

column_names A named list of characters that maps between column names in data and how those
variables are referenced in sl3_Task functions.

drop_missing_outcome Logical indicating whether to drop outcomes that are missing.

flag Logical indicating whether to notify the user when there are outcomes that are missing.

folds An optional origami fold object, as generated by make_folds, specifying a cross-validation
scheme. If NULL (default), a V-fold cross-validation scheme with V = 10 will be considered
for learners that use cross-validation as part of their fitting procedure. Also, if NULL (default)
and id is specified, then a clustered V-fold cross-validation procedure with 10 folds will be
considered. Use sl3_list_learners("cv") to find learners whose fitting procedures involve
cross-validation.

Methods

add_interactions(interactions, warn_on_existing = TRUE) Adds interaction terms to task,
returns a task with interaction terms added to covariate list.

sl3_Task 119

• interactions: A list of lists, where each sublist describes one interaction term, listing
the variables that comprise it

• warn_on_existing: If TRUE, produce a warning if there is already a column with a
name matching this interaction term

add_columns(fit_uuid, new_data, global_cols=FALSE) Add columns to internal data, return-
ing an updated vector of column_names

• fit_uuid: A uuid character that is used to generate unique internal column names. This
prevents two added columns with the same name overwriting each other, provided they
have different fit_uuid.

• new_data: A data.table containing the columns to add
• global_cols: If true, don’t use the fit_uuid to make unique column names

next_in_chain(covariates=NULL, outcome=NULL, id=NULL, weights=NULL, offset=NULL, column_names=NULL, new_nodes=NULL, ...)
Used by learner$chain methods to generate a task with the same underlying data, but redefined
nodes. Most of the parameter values are passed to the sl3_Task constructor, documented
above.

• covariates: An updated covariates character vector
• outcome: An updated outcome character vector
• id: An updated id character value
• weights: An updated weights character value
• offset: An updated offset character value
• column_names: An updated column_names character vector
• new_nodes: An updated list of node names
• ...: Other arguments passed to the sl3_Task constructor for the new task

subset_task(row_index) Returns a task with rows subsetted using the row_index index vector

• row_index: An index vector defining the subset

get_data(rows, columns) Returns a data.table containing a subset of task data.

• rows: An index vector defining the rows to return

• columns: A character vector of columns to return.

has_node(node_name) Returns true if the node is defined in the task

• node_name: The name of the node to look for

get_node(node_name, generator_fun=NULL) Returns a ddta.table with the requested node’s data

• node_name: The name of the node to look for
• generator_fun: A function(node_name, n) that can generate the node if it was not

specified in the task.

Fields

raw_data Internal representation of the data

data Formatted task data

nrow Number of observations

nodes A list of node variables

120 Stack

X a data.table containing the covariates

X a data.table containing the covariates and an intercept term

Y a vector containing the outcomes

offsets a vector containing the offset. Will return an error if the offset wasn’t specified on con-
struction

weights a vector containing the observation weights. If weights aren’t specified on construction,
weights will default to 1

id a vector containing the observation units. If the ids aren’t specified on construction, id will
return seq_len(nrow)

folds An origami fold object, as generated by make_folds, specifying a cross-validation scheme

uuid A unique identifier of this task

column_names The named list mapping variable names to internal column names

outcome_type A variable_type object specifying the type of the outcome

Stack Learner Stacking

Description

A Stack is a special Learner that combines multiple other learners, "stacking" their predictions in
columns.

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction

Parameters

... Parameters should be individual Learners.

Common Parameters

Individual learners have their own sets of parameters. Below is a list of shared parameters, imple-
mented by Lrnr_base, and shared by all learners.

covariates A character vector of covariates. The learner will use this to subset the covariates for
any specified task

outcome_type A variable_type object used to control the outcome_type used by the learner.
Overrides the task outcome_type if specified

... All other parameters should be handled by the invidual learner classes. See the documentation
for the learner class you’re instantiating

subset_folds 121

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
define_h2o_X(), undocumented_learner

subset_folds Make folds work on subset of data

Description

subset_folds takes a origami style folds list, and returns a list of folds applicable to a subset, by
subsetting the training and validation index vectors

Usage

subset_folds(folds, subset)

Arguments

folds an origami style folds list

subset an index vector to be used to subset the data

train_task Subset Tasks for CV THe functions use origami folds to subset tasks.
These functions are used by Lrnr_cv (and therefore other learners that
use Lrnr_cv). So that nested cv works properly, currently the subsetted
task objects do not have fold structures of their own, and so generate
them from defaults if nested cv is requested.

Description

Subset Tasks for CV THe functions use origami folds to subset tasks. These functions are used by
Lrnr_cv (and therefore other learners that use Lrnr_cv). So that nested cv works properly, currently
the subsetted task objects do not have fold structures of their own, and so generate them from
defaults if nested cv is requested.

122 undocumented_learner

Usage

train_task(task, fold)

validation_task(task, fold)

Arguments

task a task to subset

fold an origami fold object to use for subsetting

undocumented_learner Undocumented Learner

Description

We haven’t documented this one yet. Feel free to contribute!

Format

R6Class object.

Value

Lrnr_base object with methods for training and prediction.

Fields

params A list of parameters needed to fully specify the learner. This includes things like model
hyperparameters.

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base,
Lrnr_bayesglm, Lrnr_caret, Lrnr_cv, Lrnr_cv_selector, Lrnr_dbarts, Lrnr_define_interactions,
Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth,
Lrnr_expSmooth, Lrnr_ga, Lrnr_gam, Lrnr_gbm, Lrnr_glm, Lrnr_glm_fast, Lrnr_glm_semiparametric,
Lrnr_glmnet, Lrnr_glmtree, Lrnr_grf, Lrnr_grfcate, Lrnr_gru_keras, Lrnr_h2o_grid, Lrnr_hal9001,
Lrnr_haldensify, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean,
Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner,
Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task,
Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation,
Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp, Lrnr_solnp_density, Lrnr_stratified,
Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline,
Stack, define_h2o_X()

Variable_Type 123

Variable_Type Specify Variable Type

Description

Specify Variable Type

Usage

variable_type(type = NULL, levels = NULL, bounds = NULL, x = NULL,
pcontinuous = getOption("sl3.pcontinuous"))

Arguments

type A type name. Valid choices include "binomial", "categorical", "continuous",
and "multivariate". When not specified, this is inferred.

levels Valid levels for discrete types.

bounds Bounds for continuous variables.

x Data to use for inferring type if not specified.

pcontinuous If type above is inferred, the proportion of unique observations above which the
variable is considered continuous.

write_learner_template

Generate a file containing a template sl3 Learner

Description

Generates a template file that can be used to write new sl3 Learners. For more information, see the
Defining New Learners vignette.

Usage

write_learner_template(file)

Arguments

file the path where the file should be written

Value

the return from file.copy. TRUE if writing the template was successful.

../docs/articles/custom_lrnrs.html

Index

∗ Learners
Custom_chain, 7
define_h2o_X, 11
Lrnr_arima, 19
Lrnr_bartMachine, 20
Lrnr_base, 21
Lrnr_bayesglm, 24
Lrnr_caret, 26
Lrnr_cv, 27
Lrnr_cv_selector, 28
Lrnr_dbarts, 30
Lrnr_define_interactions, 32
Lrnr_density_discretize, 33
Lrnr_density_hse, 35
Lrnr_density_semiparametric, 36
Lrnr_earth, 37
Lrnr_expSmooth, 39
Lrnr_ga, 41
Lrnr_gam, 42
Lrnr_gbm, 44
Lrnr_glm, 45
Lrnr_glm_fast, 49
Lrnr_glm_semiparametric, 50
Lrnr_glmnet, 46
Lrnr_glmtree, 48
Lrnr_grf, 54
Lrnr_grfcate, 56
Lrnr_gru_keras, 57
Lrnr_h2o_grid, 59
Lrnr_hal9001, 61
Lrnr_haldensify, 62
Lrnr_HarmonicReg, 64
Lrnr_independent_binomial, 65
Lrnr_lightgbm, 67
Lrnr_lstm_keras, 68
Lrnr_mean, 70
Lrnr_multiple_ts, 71
Lrnr_multivariate, 73
Lrnr_nnet, 74

Lrnr_nnls, 76
Lrnr_optim, 77
Lrnr_pca, 78
Lrnr_pkg_SuperLearner, 80
Lrnr_polspline, 81
Lrnr_pooled_hazards, 82
Lrnr_randomForest, 84
Lrnr_ranger, 85
Lrnr_revere_task, 86
Lrnr_rpart, 87
Lrnr_rugarch, 88
Lrnr_screener_augment, 90
Lrnr_screener_coefs, 91
Lrnr_screener_correlation, 93
Lrnr_screener_importance, 94
Lrnr_sl, 96
Lrnr_solnp, 98
Lrnr_solnp_density, 100
Lrnr_stratified, 101
Lrnr_subset_covariates, 102
Lrnr_svm, 103
Lrnr_ts_weights, 106
Lrnr_tsDyn, 105
Lrnr_xgboost, 107
Pipeline, 110
Stack, 120
undocumented_learner, 122

∗ data
bsds, 4
cpp, 5
cpp_1yr, 7
Custom_chain, 7
define_h2o_X, 11
density_dat, 14
Lrnr_arima, 19
Lrnr_bartMachine, 20
Lrnr_base, 21
Lrnr_bayesglm, 24
Lrnr_bound, 25

124

INDEX 125

Lrnr_caret, 26
Lrnr_cv, 27
Lrnr_cv_selector, 28
Lrnr_dbarts, 30
Lrnr_define_interactions, 32
Lrnr_density_discretize, 33
Lrnr_density_hse, 35
Lrnr_density_semiparametric, 36
Lrnr_expSmooth, 39
Lrnr_ga, 41
Lrnr_gam, 42
Lrnr_gbm, 44
Lrnr_glm, 45
Lrnr_glm_fast, 49
Lrnr_glm_semiparametric, 50
Lrnr_glmnet, 46
Lrnr_glmtree, 48
Lrnr_grf, 54
Lrnr_grfcate, 56
Lrnr_gru_keras, 57
Lrnr_h2o_grid, 59
Lrnr_hal9001, 61
Lrnr_haldensify, 62
Lrnr_HarmonicReg, 64
Lrnr_independent_binomial, 65
Lrnr_lightgbm, 67
Lrnr_lstm_keras, 68
Lrnr_mean, 70
Lrnr_multiple_ts, 71
Lrnr_multivariate, 73
Lrnr_nnet, 74
Lrnr_nnls, 76
Lrnr_optim, 77
Lrnr_pca, 78
Lrnr_pkg_SuperLearner, 80
Lrnr_polspline, 81
Lrnr_pooled_hazards, 82
Lrnr_randomForest, 84
Lrnr_ranger, 85
Lrnr_revere_task, 86
Lrnr_rpart, 87
Lrnr_rugarch, 88
Lrnr_screener_augment, 90
Lrnr_screener_coefs, 91
Lrnr_screener_correlation, 93
Lrnr_screener_importance, 94
Lrnr_sl, 96
Lrnr_solnp, 98

Lrnr_solnp_density, 100
Lrnr_stratified, 101
Lrnr_subset_covariates, 102
Lrnr_svm, 103
Lrnr_ts_weights, 106
Lrnr_tsDyn, 105
Lrnr_xgboost, 107
Pipeline, 110
sl3_revere_Task, 117
sl3_Task, 117
Stack, 120
undocumented_learner, 122

∗ importance
importance, 15
importance_plot, 17

∗ variable
importance, 15
importance_plot, 17

args_to_list, 4
arima, 19
auto.arima, 19

bart, 31
bartMachine, 20
bayesglm.fit, 24
bsds, 4

causal_forest, 56
cor.test, 93
cpp, 5
cpp_1yr, 7
cpp_imputed (cpp), 5
Custom_chain, 7, 12, 19, 21, 23, 24, 27–29,

32–35, 37, 38, 40, 42, 43, 45–47,
49–51, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

custom_ROCR_risk (risk_functions), 114
customize_chain (Custom_chain), 7
cut_interval, 62
cut_number, 62
cv.glmnet, 46, 47, 61
cv_risk, 8
cv_sl, 9, 96

data.table, 117
debug_predict (debug_train), 10

126 INDEX

debug_train, 10
debugonce_predict (debug_train), 10
debugonce_train (debug_train), 10
default_metalearner, 10, 15, 96
define_h2o_X, 8, 11, 19, 21, 24, 27–29,

32–35, 37, 38, 40, 42, 43, 45, 46,
48–50, 52, 55, 57, 58, 60, 62, 63, 65,
66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

delayed_learner_fit_chain
(delayed_make_learner), 13

delayed_learner_fit_predict
(delayed_make_learner), 13

delayed_learner_process_formula
(delayed_make_learner), 13

delayed_learner_subset_covariates
(delayed_make_learner), 13

delayed_learner_train
(delayed_make_learner), 13

delayed_make_learner, 13
density_dat, 14
dt_expand_factors

(factor_to_indicators), 14

earth, 37, 38
ets, 39, 40

factor_to_indicators, 14
family, 43
family.mgcv, 43
file.copy, 123
fit_hal, 61, 63
fold_funs, 96, 97
folds_vfold, 97
formula, 51
fourier, 64

ga, 41
gam, 42, 43
gbm, 44
gbm.fit, 44
ggplot, 17
glm, 46, 48
glm.fit, 45, 46, 49–51
glmnet, 47, 61, 63
glmtree, 48

h2o.glm, 11, 12

haldensify, 63

importance, 15, 17, 85
importance_plot, 15, 17
inverse_sample, 18

keras, 58, 69

learner_fit_chain
(delayed_make_learner), 13

learner_fit_predict
(delayed_make_learner), 13

learner_process_formula
(delayed_make_learner), 13

learner_subset_covariates
(delayed_make_learner), 13

learner_train (delayed_make_learner), 13
lgb.train, 67
loss_functions, 8, 15, 18, 29, 41, 78, 98, 114
loss_loglik_binomial (loss_functions),

18
loss_loglik_multinomial

(loss_functions), 18
loss_loglik_true_cat (loss_functions),

18
loss_squared_error (loss_functions), 18
loss_squared_error_multivariate

(loss_functions), 18
Lrnr_arima, 8, 12, 19, 21, 23, 24, 27–29,

32–35, 37, 38, 40, 42, 43, 45–47,
49–51, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_bartMachine, 8, 12, 19, 20, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49–51, 55, 56, 58, 60, 62, 63,
65, 66, 68, 69, 71, 72, 74–76, 78, 79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_base, 8, 11, 12, 19–21, 21, 24–30,
32–51, 54–108, 110, 111, 120–122

Lrnr_bayesglm, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47,
49–51, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

INDEX 127

Lrnr_bound, 25
Lrnr_caret, 8, 12, 19, 21, 23, 24, 26, 28, 29,

32–35, 37, 38, 40, 42, 43, 45–47,
49–51, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_cv, 8, 12, 19, 21, 23, 24, 27, 27, 29,
32–35, 37, 38, 40, 42, 43, 45–47,
49–51, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_cv_selector, 8, 12, 19, 21, 23, 24, 27,
28, 28, 32–35, 37, 38, 40, 42, 43,
45–47, 49–51, 55, 56, 58, 60, 62, 63,
65, 66, 68, 69, 71, 72, 74–76, 78, 79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_dbarts, 8, 12, 19, 21, 23, 24, 27–29, 30,
33–35, 37, 38, 40, 42, 43, 45–47,
49–51, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_define_interactions, 8, 12, 19, 21,
23, 24, 27–29, 32, 32, 34, 35, 37, 38,
40, 42, 43, 45–47, 49–51, 55, 56, 58,
60, 62, 63, 65, 66, 68, 69, 71, 72,
74–76, 78, 79, 81–84, 86–90, 92, 93,
95, 97, 99–101, 103–105, 107, 108,
111, 121, 122

Lrnr_density_discretize, 8, 12, 19, 21, 23,
24, 27–29, 32, 33, 33, 35, 37, 38, 40,
42, 43, 45–47, 49, 50, 52, 55, 56, 58,
60, 62, 63, 65, 66, 68, 69, 71, 72,
74–76, 78, 79, 81–84, 86–90, 92, 93,
95, 97, 99–101, 103–105, 107, 108,
111, 121, 122

Lrnr_density_hse, 8, 12, 19, 21, 23, 24,
27–29, 32–34, 35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 56, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_density_semiparametric, 8, 12, 19,

21, 23, 24, 27–29, 32–35, 36, 38, 40,
42, 43, 45–47, 49, 50, 52, 55, 56, 58,
60, 62, 63, 65, 66, 68, 69, 71, 72,
74–76, 78, 79, 81–84, 86–90, 92, 93,
95, 97, 99–101, 103–105, 107, 108,
111, 121, 122

Lrnr_earth, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 37, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_expSmooth, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 39, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_ga, 8, 12, 19, 21, 23, 24, 27–29, 32–35,
37, 38, 40, 41, 43, 45–47, 49, 50, 52,
55, 56, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74–76, 78, 79, 81–84, 86–90,
92, 93, 95, 97, 99–101, 103–105,
107, 108, 111, 121, 122

Lrnr_gam, 8, 12, 19, 21, 23, 24, 27–29, 32–35,
37, 38, 40, 42, 42, 45–47, 49, 50, 52,
55, 56, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74–76, 78, 79, 81–84, 86–90,
92, 93, 95, 97, 99–101, 103–105,
107, 108, 111, 121, 122

Lrnr_gbm, 8, 12, 19, 21, 23, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 44, 46, 47, 49, 50,
52, 55, 56, 58, 60, 62, 63, 65, 66, 68,
69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_glm, 8, 12, 19, 21, 23, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 45, 45, 47, 49, 50,
52, 55, 56, 58, 60, 62, 63, 65, 66, 68,
69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_glm_fast, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
49, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

128 INDEX

Lrnr_glm_semiparametric, 8, 12, 19, 21, 23,
24, 27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 50, 55, 56, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_glmnet, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45, 46, 46,
49, 50, 52, 55, 56, 58, 60, 62, 63, 65,
66, 68, 69, 71, 72, 74–76, 78, 79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_glmtree, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 48,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_grf, 8, 12, 19, 21, 23, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 45–47, 49, 50, 52,
54, 56, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74–76, 78, 79, 81–84, 86–90,
92, 93, 95, 97, 99–101, 103–105,
107, 108, 111, 121, 122

Lrnr_grfcate, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_gru_keras, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 57, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_h2o_classifier (Lrnr_h2o_grid), 59
Lrnr_h2o_glm (define_h2o_X), 11
Lrnr_h2o_grid, 8, 12, 19, 21, 23, 24, 27–29,

32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 59, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_h2o_mutator (Lrnr_h2o_grid), 59
Lrnr_hal9001, 8, 12, 19, 21, 23, 24, 27–29,

32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 61, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_haldensify, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 56, 58, 60, 62,
62, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_HarmonicReg, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49–51, 55, 56, 58, 60, 62, 63,
64, 66, 68, 69, 71, 72, 74–76, 78, 79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_independent_binomial, 8, 12, 19, 21,
23, 24, 27–29, 32–35, 37, 38, 40, 42,
43, 45–47, 49, 50, 52, 55, 56, 58, 60,
62, 63, 65, 65, 68, 69, 71, 72, 74–76,
78, 79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_lightgbm, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
67, 69, 71, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_lstm_keras, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 56, 58, 60, 62,
63, 65, 66, 68, 68, 71, 72, 74–76, 78,
79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_mean, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 70, 72, 74–76, 78, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_multiple_ts, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 56, 58, 60, 62,

INDEX 129

63, 65, 66, 68, 69, 71, 71, 74–76, 78,
79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_multivariate, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 56, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 73, 75, 76,
78, 79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_nnet, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74, 74, 76, 78, 79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_nnls, 8, 11, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74, 75, 76, 78, 79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_optim, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 56, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 77, 79, 81–84,
86–90, 92, 93, 95, 97, 99–101,
103–105, 107, 108, 111, 121, 122

Lrnr_pca, 8, 12, 19, 21, 23, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 45–47, 49, 50, 52,
55, 56, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74–76, 78, 78, 81–84, 86–90,
92, 93, 95, 97, 99–101, 103–105,
107, 108, 111, 121, 122

Lrnr_pkg_SuperLearner, 8, 12, 19, 21, 23,
24, 27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 56, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 80, 82–84, 86–90, 92, 93, 95, 97,
99–101, 103–105, 107, 108, 111,
121, 122

Lrnr_pkg_SuperLearner_method
(Lrnr_pkg_SuperLearner), 80

Lrnr_pkg_SuperLearner_screener
(Lrnr_pkg_SuperLearner), 80

Lrnr_polspline, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 57, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81, 81,
83, 84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_pooled_hazards, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 81, 82, 82, 84, 86–90, 92, 93, 95,
97, 99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_randomForest, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 81–83, 84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_ranger, 8, 12, 19, 21, 23, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 57, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74–76, 78, 79, 81–84,
85, 87–90, 92, 93, 95, 97, 99–101,
103, 104, 106–108, 111, 121, 122

Lrnr_revere_task, 8, 12, 19, 21, 23, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74–76, 78,
79, 81–84, 86, 86, 88–90, 92, 93, 95,
97, 99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_rpart, 8, 12, 19, 21, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 45–47, 49, 50, 52,
55, 57, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74, 75, 77–79, 81–84, 86, 87,
87, 89, 90, 92, 93, 95, 97, 99–101,
103, 104, 106–108, 111, 121, 122

Lrnr_rugarch, 8, 12, 19, 21, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45–47, 49,
50, 52, 55, 57, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74, 75, 77–79, 81–84,
86–88, 88, 90, 92, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_screener_augment, 8, 12, 19, 21, 24,

130 INDEX

27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74, 75,
77–79, 81–84, 86–89, 90, 92, 93, 95,
97, 99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_screener_coefs, 8, 12, 19, 21, 24,
27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74, 75,
77–79, 81–84, 86–90, 91, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_screener_correlation, 8, 12, 19, 21,
24, 27–29, 32–35, 37, 38, 40, 42, 43,
45–47, 49, 50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74, 75,
77–79, 81–84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_screener_importance, 8, 12, 19, 21,
24, 27–29, 32–35, 37, 38, 40, 42, 43,
45, 46, 48–50, 52, 55, 57, 58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 74, 75,
77–79, 81–84, 86–90, 92, 93, 94, 97,
99–101, 103, 104, 106–108, 111,
121, 122

Lrnr_sl, 8, 9, 12, 19, 21, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 45, 46, 48–50, 52,
55, 57, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74, 75, 77–79, 81–84, 86–90,
92, 93, 95, 96, 99–101, 103, 104,
106–108, 111, 121, 122

Lrnr_solnp, 8, 11, 12, 19, 21, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45, 46,
48–50, 52, 55, 57, 58, 60, 62, 63, 65,
66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97, 98,
100, 101, 103, 104, 106–108, 111,
121, 122

Lrnr_solnp_density, 8, 12, 19, 21, 24,
27–29, 32–35, 37, 38, 40, 42, 43, 45,
46, 48–50, 52, 55, 57, 58, 60, 62, 63,
65, 66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97, 99,
100, 101, 103, 104, 106–108, 111,
121, 122

Lrnr_stratified, 8, 12, 19, 21, 24, 27–29,

32–35, 37, 38, 40, 42, 43, 45, 46,
48–50, 52, 55, 57, 58, 60, 62, 63, 65,
66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97, 99,
100, 101, 103, 104, 106–108, 111,
121, 122

Lrnr_subset_covariates, 8, 12, 19, 21, 24,
27–29, 32–35, 37, 38, 40, 42, 43, 45,
46, 48–50, 52, 55, 57, 58, 60, 62, 63,
65, 66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 102, 104, 106–108, 111,
121, 122

Lrnr_svm, 8, 12, 19, 21, 24, 27–29, 32–35, 37,
38, 40, 42, 43, 45, 46, 48–50, 52, 55,
57, 58, 60, 62, 63, 65, 66, 68, 69, 71,
72, 74, 75, 77–79, 81–84, 86–90, 92,
93, 95, 97, 99–101, 103, 103,
106–108, 111, 121, 122

Lrnr_ts_weights, 8, 12, 19, 21, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45, 46,
48–50, 52, 55, 57, 58, 60, 62, 63, 65,
66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106, 106, 108,
111, 121, 122

Lrnr_tsDyn, 8, 12, 19, 21, 24, 27–29, 32–35,
37, 38, 40, 42, 43, 45, 46, 48–50, 52,
55, 57, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74, 75, 77–79, 81–84, 86–90,
92, 93, 95, 97, 99–101, 103, 104,
105, 107, 108, 111, 121, 122

Lrnr_xgboost, 8, 12, 19, 21, 24, 27–29,
32–35, 37, 38, 40, 42, 43, 45, 46,
48–50, 52, 55, 57, 58, 60, 62, 63, 65,
66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106, 107, 107,
111, 121, 122

make_folds, 118, 120
make_learner, 109
make_learner (Lrnr_base), 21
make_learner_stack, 108
make_sl3_Task, 113
make_sl3_Task (sl3_Task), 117
metalearner_linear (metalearners), 109
metalearner_linear_multinomial

(metalearners), 109

INDEX 131

metalearner_linear_multivariate
(metalearners), 109

metalearner_logistic_binomial
(metalearners), 109

metalearners, 41, 77, 98, 109
mob_control, 48

nnet, 75
nnls, 76
normalize_rows (pack_predictions), 110

optim, 77

pack_predictions, 110
performance, 115
Pipeline, 8, 12, 19, 21, 24, 25, 27–29, 32–35,

37, 38, 40, 42, 43, 45, 46, 48–50, 52,
55, 57, 58, 60, 62, 63, 65, 66, 68, 69,
71, 72, 74, 75, 77–79, 81–84, 86–90,
92–95, 97, 99–101, 103, 104,
106–108, 110, 121, 122

polyclass, 81, 82
polymars, 81, 82
pooled_hazard_task, 111
predict_classes, 112
prediction_plot, 112
print.packed_predictions

(pack_predictions), 110
process_data, 113

R6Class, 7, 11, 19, 20, 22, 24, 26, 27, 29, 30,
32, 33, 35–37, 39, 41, 42, 44, 45,
47–49, 51, 54, 56, 57, 59, 61, 62, 64,
66, 67, 69–71, 73, 75–78, 80–82, 84,
85, 87, 88, 90, 91, 93, 94, 96, 98,
100–103, 105–107, 110, 117, 120,
122

randomForest, 15, 84
ranger, 85
risk, 114
risk_functions, 8, 15, 29, 41, 98, 114
rpart, 87, 88

safe_dim, 115
Shared_Data, 115
sl3_debug_mode (debug_train), 10
sl3_list_learners

(sl3_list_properties), 116
sl3_list_properties, 116

sl3_revere_Task, 117
sl3_Task, 48, 111, 113, 114, 117
sl3Options, 116
solnp, 98, 100
speedglm.wfit, 49, 50
Stack, 8, 12, 19, 21, 24, 27–29, 32–35, 37, 38,

40, 42, 43, 45, 46, 48–50, 52, 55, 57,
58, 60, 62, 63, 65, 66, 68, 69, 71, 72,
74, 75, 77–79, 81–84, 86–90, 92, 93,
95, 97, 99–101, 103, 104, 106–108,
111, 120, 122

subset_folds, 121
svm, 103, 104

train, 26
train_task, 121
trainControl, 26
tslm, 64

ugarchfit, 88, 89
ugarchspec, 89
undebug_learner (debug_train), 10
undocumented_learner, 8, 12, 19, 21, 24,

27–29, 32–35, 37, 38, 40, 42, 43, 45,
46, 48–50, 52, 55, 57, 58, 60, 62, 63,
65, 66, 68, 69, 71, 72, 74, 75, 77–79,
81–84, 86–90, 92, 93, 95, 97,
99–101, 103, 104, 106–108, 111,
121, 122

unpack_predictions (pack_predictions),
110

validation_task (train_task), 121
Variable_Type, 123
variable_type, 12, 22, 31, 34–36, 55, 60, 66,

73, 75, 78, 79, 81, 83, 100, 102, 111,
118, 120

variable_type (Variable_Type), 123

write_learner_template, 123

xgb.train, 107

	args_to_list
	bsds
	cpp
	cpp_1yr
	Custom_chain
	cv_risk
	cv_sl
	debug_train
	default_metalearner
	define_h2o_X
	delayed_make_learner
	density_dat
	factor_to_indicators
	importance
	importance_plot
	inverse_sample
	loss_functions
	Lrnr_arima
	Lrnr_bartMachine
	Lrnr_base
	Lrnr_bayesglm
	Lrnr_bound
	Lrnr_caret
	Lrnr_cv
	Lrnr_cv_selector
	Lrnr_dbarts
	Lrnr_define_interactions
	Lrnr_density_discretize
	Lrnr_density_hse
	Lrnr_density_semiparametric
	Lrnr_earth
	Lrnr_expSmooth
	Lrnr_ga
	Lrnr_gam
	Lrnr_gbm
	Lrnr_glm
	Lrnr_glmnet
	Lrnr_glmtree
	Lrnr_glm_fast
	Lrnr_glm_semiparametric
	Lrnr_grf
	Lrnr_grfcate
	Lrnr_gru_keras
	Lrnr_h2o_grid
	Lrnr_hal9001
	Lrnr_haldensify
	Lrnr_HarmonicReg
	Lrnr_independent_binomial
	Lrnr_lightgbm
	Lrnr_lstm_keras
	Lrnr_mean
	Lrnr_multiple_ts
	Lrnr_multivariate
	Lrnr_nnet
	Lrnr_nnls
	Lrnr_optim
	Lrnr_pca
	Lrnr_pkg_SuperLearner
	Lrnr_polspline
	Lrnr_pooled_hazards
	Lrnr_randomForest
	Lrnr_ranger
	Lrnr_revere_task
	Lrnr_rpart
	Lrnr_rugarch
	Lrnr_screener_augment
	Lrnr_screener_coefs
	Lrnr_screener_correlation
	Lrnr_screener_importance
	Lrnr_sl
	Lrnr_solnp
	Lrnr_solnp_density
	Lrnr_stratified
	Lrnr_subset_covariates
	Lrnr_svm
	Lrnr_tsDyn
	Lrnr_ts_weights
	Lrnr_xgboost
	make_learner_stack
	metalearners
	pack_predictions
	Pipeline
	pooled_hazard_task
	prediction_plot
	predict_classes
	process_data
	risk
	risk_functions
	safe_dim
	Shared_Data
	sl3Options
	sl3_list_properties
	sl3_revere_Task
	sl3_Task
	Stack
	subset_folds
	train_task
	undocumented_learner
	Variable_Type
	write_learner_template
	Index

