Package: tmle3mopttx 1.0.0

Ivana Malenica

tmle3mopttx: Targeted Maximum Likelihood Estimation of the Mean under Optimal Individualized Treatment

This package estimates the optimal individualized treatment rule for the categorical treatment using Super Learner (sl3). In order to avoid nested cross-validation, it uses split-specific estimates of Q and g to estimate the rule as described by Coyle et al. In addition, it provides the Targeted Maximum Likelihood estimates of the mean performance using CV-TMLE under such estimated rules. This is an adapter package for use with the tmle3 framework and the tlverse software ecosystem for Targeted Learning.

Authors:Ivana Malenica [aut, cre], Jeremy Coyle [aut, cph], Mark van der Laan [aut, ths], Haodong Li [ctb]

tmle3mopttx_1.0.0.tar.gz
tmle3mopttx_1.0.0.zip(r-4.5)tmle3mopttx_1.0.0.zip(r-4.4)tmle3mopttx_1.0.0.zip(r-4.3)
tmle3mopttx_1.0.0.tgz(r-4.4-any)tmle3mopttx_1.0.0.tgz(r-4.3-any)
tmle3mopttx_1.0.0.tar.gz(r-4.5-noble)tmle3mopttx_1.0.0.tar.gz(r-4.4-noble)
tmle3mopttx_1.0.0.tgz(r-4.4-emscripten)tmle3mopttx_1.0.0.tgz(r-4.3-emscripten)
tmle3mopttx.pdf |tmle3mopttx.html
tmle3mopttx/json (API)

# Install 'tmle3mopttx' in R:
install.packages('tmle3mopttx', repos = c('https://tlverse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tlverse/tmle3mopttx/issues

Datasets:
  • data_bin - Mock data set with Binary Treatment
  • data_cat - Mock data set with Categorical Treatment
  • data_cat_realistic - Mock data set with Categorical Treatment and rare treatment
  • data_cat_vim - Mock data set for Variable Importance Analysis with Categorical Treatment

On CRAN:

categorical-treatmentcausal-inferenceheterogeneous-effectsmachine-learningoptimal-individualized-treatmenttargeted-learningvariable-importance

3.69 score 10 stars 49 scripts 14 exports 127 dependencies

Last updated 2 years agofrom:3c0e8437af. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winNOTEOct 31 2024
R-4.5-linuxNOTEOct 31 2024
R-4.4-winNOTEOct 31 2024
R-4.4-macNOTEOct 31 2024
R-4.3-winNOTEOct 31 2024
R-4.3-macNOTEOct 31 2024

Exports:create_mv_learnersLF_rulenormalize_rowsOptimal_Rule_Q_learningOptimal_Rule_RevereParam_TSM_nameQ_learningtmle3_mopttx_blip_reveretmle3_mopttx_Qtmle3_mopttx_vimtmle3_Spec_mopttx_blip_reveretmle3_Spec_mopttx_Qtmle3_Spec_mopttx_vimvals_from_factor

Dependencies:abindassertthatbackportsbase64encBBmiscbitopsbslibcachemcaretcaToolscheckmateclasscliclockcodetoolscolorspacecpp11crayondata.tabledelayeddiagramdigestdplyre1071evaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsggplot2glmnetglobalsgluegowergplotsgtablegtoolshal9001hardhathighrhmshtmltoolshtmlwidgetsigraphipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmunsellmvtnormnlmennetnumDerivorigamiparallellypillarpkgconfigplyrprettyunitspROCprodlimprogressprogressrproxypurrrR.methodsS3R.ooR.utilsR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackrecipesreshape2rlangrmarkdownROCRrpartrstackdequesassscalesshapesl3SQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetinytextmle3tzdbutf8uuidvctrsviridisLitevisNetworkwithrxfunyaml